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Preface

‘How does that work?’ This may be the fundamental question of the natural
sciences. Over the centuries, scientists have discovered ever smaller particles:
from molecules, to atoms, to quarks. On the other end of the spectrum, we have
learned more and more about our solar system, galaxy, and the entire universe.
And somewhere in between, a set of awkwardly arranged molecules forms you: a
living, breathing and thinking human being. Now, you are certainly not the only
thing in the universe of academic interest, but there is something unique about
phenomena found at this level: the fact that it feels like you are not merely at
the whim of natural forces bouncing you around, but that you can exert control
over your movements; the fact that it feels like anything at all. There must be a
way that these feelings are instantiated by our molecules, by our cells, and by our
brain. To get a better grip on how humans function, the field of neuroscience
has a ‘from molecule to man’ approach. In this thesis, we will zoom in on a tiny
piece of this puzzle: can we better understand communication between different
regions in the brain by looking at MRI brain scans in even greater detail than is
normally done?





CHAPTER 1

Introduction



10 Introduction

Neuroimaging

Researchers who investigate the workings of the brain make use of a variety of
specialised tools to extract different types of information. One dimension of
information type concerns the spatial scale we consider. We can investigate
at the microscale, the level of the individual neuron; or the macroscale, the
level of thousands of neurons firing at the same time. But when we zoom in to
the microscale, we can only measure a very small subset of the approximately
86 billion neurons in the human brain [77], and measurements on this scale
utilise highly invasive procedures which are impractical for large-scale use in
living humans. Macroscale procedures are less invasive and measure electric or
magnetic fields outside the brain; through, for instance, electroencephalography
(EEG) or magnetoencephalography (MEG). However, these procedures integrate
signals from thousands of neurons and are difficult to spatially pinpoint with any
precision. Another technique that can image the brain is MRI. While it does
not measure neuronal activity directly, and is not as fast as M/EEG, it gives
highly detailed three-dimensional images of the brain. MRI is not nearly specific
enough for the microscale, but may just be able to pick up information from the
organisational units that are formed by neurons: the cortical layers and cortical
columns. In this thesis, we explore the possibility of using MRI for the mesoscale:
the intermediate level between the neurons and the networks. We push the limits
of fMRI analysis to prepare functional MRI (fMRI) for higher spatial resolution,
so that we reach the level of the cortical layers (See Figure 1.1). This could
teach us more about how neuronal networks communicate with each other and
together accomplish the complex tasks of which the brain is capable.

Cortical layers

The grey matter of the neocortex is a thin shell of approximately 3 mm [193]
around the white matter. The white matter consists of long fibre tracts that relay
signals from one brain area to another, but it is mainly in the grey matter that
neuronal computations are performed. The grey matter itself consists of several
shells: cortical layers (see Figure 1.2) which are believed to have functionally
distinct roles. In principle, ascending connections (feedforward, sensory; e.g., ‘I
see an apple’) and descending connections (feedback, prediction; e.g., ‘I imagine
seeing an apple’) are distinguished [148] and can be related to hierarchical
ranks of processing [11]. A given node in the cortical hierarchy will receive
feedforward input that targets layer 4 and to a lesser extent layer 5 [32]. These
predominantly originate from supragranular layers (see Figure 1.3). On the other
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Figure 1.1: The temporal and spatial resolution of neuroimaging methods. By and large,
methods of higher spatial resolution are more invasive. In this thesis, we tried to
use the non-invasive technique of fMRI to cross the boundary of layer specificity.
Picture recreated after Sejnowski et al. (2014) [153].

hand, feedback connections from higher areas terminate primarily in layers 1 and
5, but avoid layer 4 [6]. The differential contribution of feedforward and feedback
activation is not well established [160]. This ‘canonical microcircuit’ describes
the excitatory relay of information within the cortex. While the specifics of
the performed computations are largely unknown, in general the two types
of information can be somewhat speculatively linked to the predictive coding
framework [52]. This framework states that at the fundamental level, the brain
continuously receives predictions from higher regions (feedback signal) which
it compares to prediction error from lower regions (feedforward signal). Based
on this comparison, it makes new predictions and prediction errors and thus
continues in a recurrent process of updating knowledge based on new information.
Through this link to the predictive coding framework, the cortical layers can
provide a more mechanistic understanding of the computations in the brain
[159].

The layers can be used to learn about information processing within a
single region, but neurons also form connections with more distant regions,
affording us the potential means to investigate laminar specific, cross-regional
communication. Tracer studies reveal large networks of regions via feedforward
and feedback connections [46], see Figure 1.4. Tracers heavily rely on (post-
mortem) structural connectivity, so even though the connections themselves can
be mapped out, the strength and nature of the connections remain unclear. This
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Figure 1.2: Cortical stainings of the histological layers, taken from Brodmann (1909) [25].
Brodmann divided the cortex into regions, based on their differences in laminar
structure. There is a wide variety in the thicknesses of the (sub)layers for different
properties (nervous tissue, number of cell bodies, myelination), which can be
highlighted with different stainings.

Figure 1.3: Layer specific processing, adapted from Shipp et al. (2013)[160]. From region i,
there are feed forward connections (green) primarily targeting the middle layers in
region higher in the cortical hierarchy (i+1, i+2, . . .). Feedback connections (blue,
purple) target top and deep layers in lower regions in the hierarchy (i−1, i−2, . . .).

is why in vivo investigation of the cortical layers could add new information to
the workings of directional and causal communication during task performance.
Current work into interregional causal inference in the brain primarily relies on
characteristics of haemodynamic consequences of brain interaction in Dynamic
Causal Modelling (DCM) [51] or timing differences in signals with Granger
Causality [1], which can further be used to establish cortical hierarchies [121].
The cortical layers may provide complementary information on interregional
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feedforward and feedback communication in living subjects and could tell us
more about the crosstalk between regions at the network level.
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Figure 1.4: Picture adapted from Felleman & Van Essen (1991) [46]. A graphical depiction
of cortical regions with structural connections as obtained by post-mortem tracer
studies. This is also a rudimentary reflection of hierarchical processing in the
brain. As these connections originate from and target specific layers, it would
be interesting to see if similarities can be found in the layer specific fMRI signal.
This could allow for making hierarchical statements about neuronal processes
based on fMRI data.

Across cortical regions and across species, the layered structure of the cortex
is largely conserved. It is therefore likely that many of the computational
underpinnings translate from one brain region to the next [27]. Thus, a better
understanding of layer specific processing in specific regions and during specific
tasks could teach us more general principles of brain organisation. One can
imagine that for some perceptual tasks, feedforward drive may dominate the
computation, for example when a lot of sensory input is involved. Alternatively,
when strong predictions, expectations, or imagination is involved, feedback will
likely play a larger role. Linking the basic feedforward and feedback information
pathways to conceptual level cognitive domains such as language, memory,
or emotion is a difficult task for the future. To obtain a better mechanistic
understanding of these evolutionary achievements, it is important to learn more
about laminar processing.

There is a variety of cognitive functions for which layer specific dissociation
could already be an interesting tool, as there are clear predictions with respect
to feedback and feedforward drive [103]. For example, in the area of visual



14 Introduction

attention, prediction, or saliency, it could be interesting to compare and contrast
the different types of hypothesised feedback drive against visual feedforward
drive. Layer specific dissociation may also be useful in clinical applications,
as some mental disorders are expected to have abnormalities in directional
communication between brain regions. Hallucinations and delusions are strongly
linked to abnormal perception and are hypothesised to have different predictive
coding mechanisms [49]. This may well be reflected in neurophysiological traces
of the cortical layer activation patterns.

Interesting similarities with the brain are found in the emerging field of deep
learning networks. Convolutional layers of the networks have been correlated
to the visual hierarchy of the brain [70], and it would be interesting to look for
similarities at an even deeper level. Given that deep learning networks work with
feedback and feedforward propagation of signals, it could also be interesting to
relate their features to the cortical layers.

Therefore, signals from the cortical layers in a brain region may contain
information about the nature of computations and about communication with
other regions. Investigating this during task performance could open doors to
new types of information and shed light on a multitude of cognitive processes.
However, the greatest barrier is that the layers (and neuronal communication
in general) are not easily measured. The most realistic current measurement
technique is functional Magnetic Resonance Imaging, due to its high spatial
resolution and non-invasiveness. Unfortunately, fMRI does not measure neuronal
firing directly, but only picks up changes in blood oxygenation that occur as a
result of neuronal firing. We therefore first need to gain a better understanding
of what type of information it is that fMRI gives us.

MRI

The basis of magnetic resonance imaging (MRI) is the phenomenon of nuclear
magnetic resonance (NMR). In principle, this describes the magnetic behaviour
of protons and neutrons in terms of their quantum spin: a preferred axis of
rotation of an elementary particle. Normally, each spin has a random orientation
of the axis of rotation. In the presence of a magnetic field, however, the spins
will start precessing around the axis of the main magnetic field. The speed
of rotation (angular frequency) will be directly proportional to the magnitude
of the field: the Larmor frequency. In 1946, Felix Bloch and Edward Purcell
independently performed the first experiments in which they manipulated the
spins with radio frequency (RF) pulses, for which they later received a Nobel
prize. Bloch described the nuclear magnetisation of a material as a function of
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its relaxation times T1 and T2 [18]. The T1 value describes the time it takes for
longitudinal magnetisation (aligned with the magnetic field) in a certain material
to return to thermal equilibrium after it has been excited by an RF pulse. The
T2 value describes the time constant with which the transverse magnetisation
(perpendicular to the magnetic field) decays as a result of loss of the phase
coherence between spins. Further development of the measurement technique
by Paul C. Lauterbur in 1973 [102], for which he received a Nobel prize thirty
years later, allowed for the measurement of these properties as a function of
two-dimensional space. Initially, the approach was much like the tomographic
back-projection technique that forms the basis of Computed Tomography (CT).
This description formed the basis of gradient echo imaging, where an applied
magnetic field (gradient), additional to the main magnetic field, gives rise to
a signal from which an image can be reconstructed. A later description was a
formalism in which the spatial frequencies of an image, k-space, is described as
an integral of the gradient [171, 109]:

~k(t) = γ

∫ t

0
~G(t′)dt′ (1.1)

This is still the basis of current MR imaging. The equation represents the
mapping of spatial frequencies in an image as a function of the applied gradient
over time. The original simple graphical representation is shown in Figure 1.5.
If the gradients are applied so that a large part of k-space is homogeneously
covered, the spatial frequencies are accurately sampled. The k-space signal is
the Fourier transform of the spin density distribution ρ(~r),

S(t) = ρ̂(~k(t)) =
∫
ρ(~r)ei~k(t)·~rd~r, (1.2)

so that the k-space can easily be transformed into an image of the spin density.

Figure 1.5: Simple k-space representations [109] for projection imaging (a), line scanning (b),
Fourier imaging (c), EPI (d), modified EPI (e), and modified projection imaging
(f). The k-space is a helpful way to illustrate MRI acquisition.
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The aforementioned T1 and T2 mechanisms occur as the result of random
processes of spins returning to equilibrium. There is an additional mechanism,
T ∗2 , in which the dephasing of the spins is not random but predictable, and
thus reversible. After an RF pulse, spins start out by pointing in the same
direction, but then fan out and start to systematically dephase in clockwise or
counter-clockwise direction. Hence, the spins will cancel each other out, so
that the signal decays much faster than T2, but instead with T ∗2 . However, the
accumulated phase can be reversed (by a 180° RF pulse), so that they start
to converge until they point in the same direction again to form a spin echo.
As a result, gradient echo images are T ∗2 -weighted and spin echo images are
T2-weighted.

Contrast Mechanisms

So, MRI scanners can be used to obtain a variety of types of information,
but is any of it relevant to the study of cortical layers? At the core, all
contrasts are results of changes in magnetic properties. All materials have
a magnetic susceptibility : the extent to which they become magnetised by
an external magnetic field. If the material resists the magnetic field (i.e.,
negative susceptibility) it is diamagnetic, and if it assists the field (i.e., positive
susceptibility) it is paramagnetic. Certain metals (e.g., iron, nickel, cobalt) have
very high susceptibility and are called ferromagnetic. These are the materials
that are commonly attracted by standard refrigerator magnets. Red blood cells
contain haemoglobin, which is paramagnetic when it does not carry oxygen
(deoxyhaemoglobin) because of the high spin state of the iron atom [136]. The
change in magnetic susceptibility of red blood cells when they are oxygen rich or
oxygen poor is called the Blood Oxygenation Level Dependent Signal: the BOLD
signal [132]. So, while neuronal firing does not change magnetic properties
directly, synaptic activity indirectly causes changes in blood flow that may be
picked up with an MRI scanner [110]. It is of note that large parts of the
biological mechanisms behind the neurovascular relationship are still disputed;
most importantly, the extent to which the BOLD response reflects laminar
specific activation is largely unknown.

Fundamentally, the BOLD signal arises as a consequence of magnetic field
perturbations arising from deoxyhaemoglobin molecules [130]. These changes
extend beyond the blood vessel into the tissue and depend on field strength, the
orientation of the vessel, and the vessel diameter, as well as the concentration
of deoxyhaemoglobin. From the time that the molecules are excited until the
time of the echo, molecules in the tissue move around the vasculature. If the
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trajectory of a molecule in this time is small compared to the vessel size (and
hence compared to the drop-off), there is little change in its local magnetic field
and the phase accumulation is reversible: a static effect. If, on the other hand,
the molecule’s trajectory is large, it will stochastically sample the local field,
leading to random and hence irreversible phase changes. These two contrast
mechanisms are the static and dynamic extravascular dephasing effects. The
magnetic field perturbations around the vessels scale linearly with field strength.
It is thus not surprising that the static effect also increases linearly with field
strength, however, as the dynamic effect arises from diffusion-based attenuation,
it increases quadratically. At high field strengths, the dynamic effect is sensitive
to small vessels and and thus very specific to the origin of the activation, but
detecting it requires high sensitivity [150]. At the same time, the static effect
results in high activation from venous vessels and may in part be detected further
downstream from the site of activation.

An additional source of BOLD contrast is the intravascular effect. The
magnetic field inside the vessel is slightly different from the surrounding tissue
because of the amount of deoxyhaemoglobin. As a result, the signal will start
to dephase with respect to the extravascular signal. This effect can be reversed
because it is constant over time; it is called the static intravascular effect.

The last contrast mechanism that contributes to the BOLD signal is disputed
in origin. This is irreversible (dynamic) intravascular dephasing and has to do
with the random movement of water molecules in blood vessels. It can be viewed
as either caused by exchange with a deoxyhaemoglobin molecule’s paramagnetic
centre, or in terms of diffusion around the blood cells, but no experiment to
date has been able to tease the two mechanisms apart. The intravascular effects
will accumulate in downstream vessels, and are thus less specific.

Given the four BOLD contrast mechanisms, there is still an outstanding
question about the proportions they each contribute in measurements. This
may even vary at the laminar level, as the deoxyhaemoglobin from deeper layers
flows upward to the higher layers. The relative contributions of the contrast
mechanisms in combination with the blood flow effect have been modelled for
both spin echo and gradient echo: the results suggest that most of the signal
produced in a layer is also visible in that layer [118, 173]. For spin echo the
flow effect is minimal; gradient echo has a tail that extends to more superficial
layers, but also has a higher sensitivity.

The 180° pulses in spin echo experiments reverse all static effects. Therefore,
spin echo is only sensitive to the (T2-weighted) dynamic contrast mechanisms
and is less sensitive than gradient echo, to which all four mechanisms contribute.
At higher field, the contribution of the intravascular effect is significantly smaller
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because of the shorter T2-value of blood [130]. Thus, spin echo at high field is
heavily weighted to the extravascular dynamic effect, which theoretically makes
it well suited to laminar fMRI. Unfortunately, it is harder to run spin echo
sequences at higher fields, as the number of 180° pulses increases the specific
absorption rate to the extent that this limits its application. Therefore, both
spin echo and gradient echo have advantages and disadvantages. A range of
laminar profiles has been found using spin echo (e.g., [192, 75, 62]) and gradient
echo (e.g., [141, 36, 30]). A combination of both has also been tried: GRadient
A Spin Echo (GRASE) [134, 36].

A different contrast is that of Arterial Spin Labelling (ASL) [186, 38] that
measures cerebral blood flow (CBF). CBF varies in a laminar specific fashion
[57] and may be measured with ASL at the submillimetre level [84]. There
are many variations of ASL, but for clinical application the field has reached
consensus on a preferred implementation [4]. At the core, blood is ‘labelled’
by means of an RF pulse. The labelled blood has different magnetisation and
travels downstream where it crosses the capillary bed and enters the tissue.
After a post-labelling delay (PLD), the blood has moved out of the arterioles,
but to adequately measure tissue perfusion, PLDs can be over a second. The
labelled image is only interpretable when it is compared to a similar control
image without the labelling, but with otherwise completely equivalent contrast.
This way, theoretically, the subtraction removes all signal from the stationary
tissue, and only the difference due to the inflow of blood remains to form
perfusion images of the brain [138]. Oftentimes, additional RF pulses are applied
to further reduce background tissue signal [56, 68]. Because of the large PLD
and the fact that it requires two images, ASL is an inefficient process, which
probably makes the technique unsuitable for laminar fMRI.

Next to cerebral blood flow, one can also look at cerebral blood volume.
Blood vessels may dilate and contract as a function of the activity of a brain
region. This can be measured with Vascular Space Occupancy (VASO) [111]
and can reveal layer specific differences [191, 82]. VASO makes use of the fact
that the T1 values of arterial and venous blood are very close together and both
are a lot longer than the T1 of tissue. By inverting all signal and measuring at
an inversion time where the blood signal goes through zero, the only signal that
is left has to come from tissue. Effectively, the remaining signal represents the
contribution of tissue in a voxel. On neuronal activation, blood vessels expand
and increase in voxel contribution, which decreases the tissue contribution and
lowers the signal. Thus, the VASO signal decreases on activation. At higher
field strengths, the T1 values of tissue and blood are closer together, which
makes it harder to get a VASO contrast. Much work has been invested to make
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VASO work in human fMRI for 7 Tesla, and it indeed shows task dependent
layer specific differences [81].

Figure 1.6 shows the microvasculature of a small piece of visual cortex in a
macaque. Shown in red are the arterioles: small blood vessels that dive from the
top of the cortex (the pial surface) downward to supply the whole grey matter
with blood. The smallest vessels, the capillaries, relay the oxygen to the neurons
in all cortical layers, so that deoxygenated haemoglobin is drained away by the
veins (blue). The veins on top of the cortex, which can be an order of magnitude
larger than the cortical veins, accumulate and carry off the deoxygenated blood.
From this, one can appreciate the difficulty of extracting laminar specific signals
with large signals of non-interest in the direct neighbourhood.

Figure 1.6: The microvasculature of the visual cortex of a macaque. The cortex is rich in
little venules that supply the cortex with blood. They are supplied with oxygen
by arteries (red) and drained by cortical veins (blue). The deoxyhaemoglobin
accumulates in the large draining veins directly on top of the cortex. Picture
adapted from Weber et al. [185].

The level of measured blood oxygenation depends on several factors. On
activation, more blood starts flowing (higher cerebral blood flow (CBF)), vessels
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start dilating (greater cerebral blood volume (CBV)), and the consumption of
oxygen increases (higher cerebral metabolic rate of oxygen (CMRO2)). These
quantitative measures can be related to one another, save for some free pa-
rameters that need to be empirically determined [35]. However, although the
proposed equations hold for the cortical column in its entirety, they do not take
into account potential layer specific differences. So, we cannot directly measure
neuronal activation with MRI: the closest we can get is the traces in magnetic
properties in the vasculature through BOLD, CBV, CBF, and CMRO2. The
extent to which these quantities vary at spatially specific levels of the cortical
layers is an outstanding question, however, and needs to be empirically tested.
Indeed, there are techniques to measure them: T ∗2 -weighted imaging for BOLD
[130], VASO for CBV [82], arterial spin labelling for CBV [68], and calibrated
BOLD for CMRO2 [19]. All these vary in terms of sensitivity, specificity, and
attainable resolution (spatial as well as temporal). The spatial resolution, in
combination with the type of experiment that is required, makes CBF and
CMRO2 measurements poor candidates for human in vivo fMRI. It is mainly
BOLD and CBV that have shown promising layer specific differences in animal
experiments [112, 191, 91, 61]. The main benefits of VASO compared to BOLD
are its quantifiability [111] and local specificity [90], whereas BOLD has higher
sensitivity and speed [82].

Acquisition

We have seen that MRI can be used to measure different magnetic properties,
potentially in combination with physical and physiological properties of the
brain. For our purposes, we are interested mainly in the properties of the BOLD
response, which we use to rapidly create images of the brain. Every few seconds,
an image is acquired that is a reflection of the BOLD response at that moment.
We would like to have as many images as possible as we aim to measure real-time
responses to our experiments. As a result, we may have to make compromises in
the spatial resolution, signal-to-noise ratio, or contrast-to-noise ratio. Functional
(T ∗2 -weighted) images are optimal for measuring BOLD activity, but do not
show a particularly clear differentiation between the white matter and the grey
matter (see Figure 1.7). For accurately distinguishing the cortical layers, another
image is required, with better anatomical contrast. For this, a structural (or
anatomical) scan is used. It cannot be acquired in several seconds, as is the case
with the functional scan; instead it takes several minutes. Typically, a structural
scan is T1-weighted and shows high anatomical contrast because the T1-value of
the myelinated white matter is shorter than the T1-value of the grey matter [183].
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It is often sufficient to compute a cortical reconstruction: a three-dimensional
representation of the cortical surface. A cortical reconstruction can be a useful
way of looking at the brain as a geometrical shape and can facilitate a variety
of subsequent analyses.

Figure 1.7: An example of a structural and a functional brain scan. On the left, the structural
scan has high anatomical contrast and sharp differences between the white matter
and grey matter. The contrast is sharp enough to make a three- dimensional
reconstruction of the brain (lower right corner). On the right, a functional image
is shown. The anatomical contrast is much weaker, but this type of scan can
be acquired quickly and the contrast is susceptible to slight changes in blood
deoxyhaemoglobin, related to oxygen consumption on neuronal activation.

Much research has been done to retrieve new types of information with
MRI. Complementary to this, improving the speed of the acquisition has always
been an important point of development. There is a variety of ways in which
this can be done. Acceleration techniques can make use of the mathematical
properties of the acquired signal (Hermitian symmetry of the k-space), in
order to acquire only a part of the k-space in partial Fourier acquisitions [45].
Alternatively, information can be added to the reconstruction equations by
adding in information about the sensitivity of receiver coils. Techniques like
GRAPPA, SENSE, and CAIPIRINHA use this type of information, which can
make the acquisition several times faster [158]. In general, MRI data contains
several forms of spatiotemporal redundancy that can be exploited to speed up
the acquisition [170]. Using these techniques is essential for increasing the
spatial resolution, temporal resolution, or the signal-to-noise ratio per volume.

The acquisition of anatomical scans is relatively straightforward as there
is no pressure to acquire a volume every several seconds. One can rely on
standard acquisition protocols for MPRAGE sequences [123] or use a version
that is less susceptible to intensity biases but that takes longer to acquire,
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the MP2RAGE [119]. For functional images, there are more constraints and
parameters to consider, out of which we will here discuss the difference between
2D and 3D acquisitions. A three-dimensional MRI volume can be acquired in
several ways. In a 2D acquisition, a stack of slices is sequentially acquired and
put on top of each other. This requires excitation of a single slice at a time,
and the two-dimensional encoding of each plane. For each plane, the k-space
(all spatial frequencies) is sampled and converted to an image by means of a
Fourier transform. This makes for a smooth planar image, but as the stack
of images is scanned sequentially, the vertical transition (z-direction) may be
less smooth. Every movement of the brain during the acquisition will result in
images not precisely landing on top of each other, so that images may show a
‘staircase artefact’ in the vertical direction. The higher the resolution, the more
pronounced this staircase artefact will be. In addition, towards higher resolution
the two-dimensional excited slabs need to become smaller, which requires a
sharper slice profile. This in turn requires longer pulses that easily cause higher
specific absorption rates and may cause peripheral nerve stimulation. Many of
these factors can be circumvented with a 3D acquisition [142]. Instead of a
plane-by-plane excitation and read-out, the entire volume is excited [163] to
fill a three-dimensional k-space. The image can then be reconstructed by a
single three-dimensional Fourier transform instead of a series of two-dimensional
Fourier transforms. This way, transitions between slices are smoother, which
is important for cortical layering. As a downside, any movement during the
acquisition will cause noise (blurring) in the entire image, so 3D imaging is
more vulnerable to physiological effects. However, this is generally outweighed
by the shorter volume TR that can more easily be achieved by acceleration
techniques [142]. Because there is no limitation of slice-by-slice acquisition in
the z-direction, this dimension can be used for parallel imaging. At high spatial
resolution, 3D imaging is faster and has a higher sensitivity.

Choosing a sequence requires carefully balancing the advantages and disad-
vantages against each other. Here, for its higher sensitivity, we chose to use
gradient echo with a 3D EPI acquisition to investigate the laminar BOLD signal,
at a field strength of 7 Tesla for high specificity. The potential downside of this
is the susceptibility to the larger veins on top of the cortex that might obscure
smaller effects [12].

FMRI analysis

After covering the fundamentals of measurement techniques, it is clear what
types of information may be expected to be present in the data. Extracting the
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relevant information, however, is at least as complicated as the data acquisition.
The brain is a highly convoluted structure, which we are trying to describe and
visualise by means of cubic voxel rasters. The first problem we encounter is a
geometrical one: how do we attach a brain location to voxels in space? This
can be done by making a cortical reconstruction on a high-resolution brain scan
[34, 13], with a very clear contrast between the white matter and grey matter
as seen in Figure 1.7. The distinction between white and grey matter is clear
enough to draw a three-dimensional boundary on both sides of the grey matter:
on the white matter boundary and on the pial surface, the separation between
the grey matter and the cerebrospinal fluid (CSF).

The cortical reconstruction is informative about the shape of the brain
and potentially also about the layers: one could imagine different layers as
intermediate surfaces between both outer boundaries, the locations of which
could then be used to sample the cortical layers [101, 141, 36]. This description
allows for a multitude of surface-based calculations [47, 13] and, for example, can
serve as the basis for an anatomically motivated parcellation of the cortex [21,
182]. Along the many curves of the cortex, cytoarchitectonic layers approximately
conserve volume in a given cortical column. Taking a more naturalistic flow of
the cortex into account can provide a clear advantage in high-resolution laminar
analysis [182].

The cortical reconstruction can be made on a dedicated high-resolution
high-contrast scan, but this does not yet give functional information. First, the
cortical surfaces need to be ‘coregistered’ with the functional data and brought
into the same analysis space. Unfortunately, this is made considerably more
difficult by two main factors. First, the contrast and resolution of standard
gradient echo functional data are poor, so there is not a lot of information
on which to base a good coregistration. Secondly, when ‘echo planar imaging’
(EPI) is used, a fast acquisition scheme to collect data, the data will to some
extent be geometrically distorted. The reason is that the scanner magnetic field
is not everywhere exactly equal. When we talk about a scanner with a field
strength of 7 Tesla, this means there should be a stable static magnetic field of
that strength in the centre of the scanner. However, because the presence of
a human body perturbs the field, in practice it is not as homogeneous as one
might desire. Small perturbations can be corrected by shimming : applying an
additional magnetic field to compensate for the inhomogeneities. However, this
is not accurate enough to correct all deviations and the inhomogeneities need
not even be constant over time. As mentioned before, MRI is based on spins
precessing at a frequency that is proportional to the field strength. By adding an
additional linear magnetic field gradient, the frequency of the spins essentially
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encodes their spatial locations. When a local inhomogeneity is present in the
volume, in effect the spins precess faster or slower than assumed, and as a
result they are displaced in the image. Since the displacement is field strength
dependent, distortions are more pronounced at higher fields. These can easily be
of the order of several millimetres, which comes down to a shift of the size of the
entire cortex. Therefore, extreme care must be taken in aligning scans properly
and thoroughly checking the correctness of the cortical surface in the regions
that one wants to analyse. The severity of distortions is directly dependent on
the bandwidth per pixel and field strength [89, 152]. In the phase encoding
direction, the bandwidth is a lot lower in an EPI acquisition. Given that k-space
is acquired in a standard raster pattern, for every line in the frequency direction,
one goes up only a single point in the phase encoding direction. As a result, the
distortions in the phase encoding direction can easily be two orders of magnitude
larger than in the frequency direction.

There is a wide variety of other potential noise sources that can contaminate
the (laminar) signal. Participants in a study will move several millimetres,
breathe, and have a heartbeat that is clearly visible in the signal. During an
experiment, people may suffer lapses in attention, hypnagogic episodes, and so
on. Many operations are performed on the data to remove as many sources of
noise as possible; this creates long analysis pipelines. This makes the process
of doing fMRI analysis difficult at the conceptual level, and may also create a
logistical nightmare: different software packages, programming languages, data
types, data representations, and different styles of programming. As a result, it
is understandable that the reproducibility of fMRI results can be low [131, 66].
Here we took care to build and use all tools as reproducibly as possible and to
provide all data openly, accompanied by the scripts to generate the results.

Laminar Analysis in Human FMRI

A lot of information about the computations in the brain may be uncovered
through better understanding the cortical layers. Invasive electrophysiological
recordings have indeed found relevant laminar differentiation in macaques [26,
115, 116, 175], and while the exact origins of the BOLD signal are still unknown,
there is strong evidence that the BOLD signal has a laminar footprint [62].
This is confirmed by Yu et al. [190], where they show clear layer specificity in
the onset of the BOLD response, but no prolonged laminar differentiation that
could be picked up with the temporal resolution of conventional human fMRI.
While it is known which layers are initially targeted by feedback and feedforward
signals, little is known about their further processing. There is evidence that
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excitatory neurons may quickly redistribute input from the thalamus by means of
their local axonal collaterals [72, 147]. As a result, cortical activity may nearly
instantaneously spread over several layers and columns, to the detriment of the
laminar specificity of the BOLD signal.

The field of laminar analysis is still in its infancy, but there is a growing
body of work that claims to have found hypothesised laminar differentiation in
humans [114, 122, 151, 99, 81]. Unfortunately, all of these studies use different
methods for largely the same type of analysis. To date, no published replications
exist of layer specific human in vivo studies that could reinforce these findings.
With the variations in analysis, many uncertainties in the data, and the small
size of the potential effect, it is clear that any potential effect can only be picked
up with powerful methods that address as many sources of noise as possible.
In this thesis, we constructed a robust and reusable analysis pipeline in which
we solved key issues in laminar analysis; thereby we envision making laminar
specific investigations a more routine type of study.

Thesis outline

This thesis covers two major problems in laminar fMRI that needed to be solved
before an experimental study could be conducted, and will reflect on building
an fMRI pipeline, laminar or otherwise. In Chapter 2, we will discuss a new way
of coregistering an anatomical scan with a functional scan, when the latter is
non-linearly distorted. We will explain the details of the distortion correction
technique, show its performance, and freely provide the code and data online.
Chapter 3 describes a novel way of extracting the laminar signal from data. We
show this method’s performance on a range of data, from a simulated fMRI
model to post-mortem data, to in vivo data from a set of subjects. Having
overcome several of the most challenging aspects of laminar analysis, in Chapter 4
we then proceed to a laminar experiment. In a visual attention experiment, we
investigate the laminar response. In Chapter 5, we further develop a new tool
to more easily build an fMRI analysis pipeline, to more reproducibly conduct
science, and to easily share analysis pipelines with others. Finally, these results
will be put in a broader perspective in the Discussion, Chapter 6.
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Abstract

With continuing advances in MRI techniques and the emergence of higher
static field strengths, submillimetre spatial resolution is now possible in human
functional imaging experiments. This has opened up the way for more specific
types of analysis, for example investigation of the cortical layers of the brain.
With this increased specificity, it is important to correct for the geometrical
distortions that are inherent to echo planar imaging (EPI). Inconveniently, higher
field strength also increases these distortions. The resulting displacements can
easily amount to several millimetres and as such pose a serious problem for
laminar analysis. We here present a method, Recursive Boundary Registration
(RBR), that corrects distortions between an anatomical and an EPI volume. By
recursively applying Boundary Based Registration (BBR) on progressively smaller
subregions of the brain we generate an accurate whole-brain registration, based on
the grey-white matter contrast. Explicit care is taken that the deformation does
not break the topology of the cortical surface, which is an important requirement
for several of the most common subsequent steps in laminar analysis. We show
that RBR obtains submillimetre accuracy with respect to a manually distorted
gold standard, and apply it to a set of human in vivo scans to show a clear
increase in spacial specificity. RBR further automates the process of non-linear
distortion correction. This is an important step towards routine human laminar
fMRI. We provide the code for the RBR algorithm, as well as a variety of
functions to better investigate registration performance in a public GitHub
repository, https://github.com/TimVanMourik/OpenFmriAnalysis, under
the GPL 3.0 license.

https://github.com/TimVanMourik/OpenFmriAnalysis
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2.1 Introduction

Investigation of the BOLD response with functional MRI at the level of the
cortical layers has become increasingly popular over the the last decade [40, 168].
Activation levels differ at the laminar scale [101] and they can vary depending
on the performed task [122, 99]. Laminar signals have the potential to reveal
information about the underlying neuronal processes within a cortical region,
as the signal from different layers may be associated with feed forward or
feedback signals [46, 155]. However, layer specific analysis comes with great
methodological challenges.

The thickness of the cerebral cortex varies between 1 and 4.5 millimetres
[193, 47]. Identifying individual layers therefore ideally requires sub-millimetre
resolution, at the cost of signal to noise ratio (SNR) per voxel. On top of this,
a functional experiment ideally requires a Repetition Time (TR) on the order
of several seconds. Layer specific investigations are hence best conducted at
higher field (≥7 Tesla) for improved SNR, but high field strength also have
some disadvantages [143]. The inhomogeneities of the static magnetic field B0

can cause non-linear distortions when a fast acquisition scheme like Echo Planar
Imaging (EPI) is used [117]. Distortions primarily present themselves in the
phase-encoding direction as a function of the bandwidth per pixel and static
field strength [152]. As layer specific analysis requires high spatial precision,
non-linear distortions are particularly problematic. T ∗2 -weighted images usually
have insufficient contrast to segment the cortical grey matter, so instead one
needs to identify the cortical boundaries from a different scan. This is typically
a high-contrast T1-weighted anatomical scan that can be segmented with tools
such as FreeSurfer [34], CBS Tools [14], or BrainVoyager [60]. However, as the
anatomical scan is undistorted, it may not sufficiently overlap with the functional
scan.

Several potential solutions have been proposed for providing accurate align-
ment of functional images with an anatomical image. Early papers circumvent
the problem by segmenting only a small piece of straight cortex [145, 100]. It
is also possible to resort to different acquisition schemes like FLASH, which
do not suffer significant distortions, but at a heavy cost in temporal resolution.
Koopmans et al. combine this with a vertex based realignment procedure based
on the Stripe of Gennari [101]. This approach, however, is highly specific to
parts of the primary visual cortex that show a myelinated band in the middle of
the cortex (Stripe of Gennari), and does not generalise to the rest of the brain.
Yet another alternative is to acquire an anatomical image with the same EPI
readout and field of view as the functional image, such that the two volumes
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are similarly distorted [95]. However, this (often unjustly) assumes that field
inhomogeneities, and with it the distortions, do not change between acquisitions.
Additionally, if the acquisition only covers a small part of the brain, cortical
reconstruction algorithms may easily fail, as they are often based on whole-brain
templates.

Ideally, there would be an accurate cross-contrast (T1 to T ∗2 ) registration
algorithm, but this is a notoriously hard problem. The combination of the warping
of images and the unknown relation between contrasts creates a vast parameter
space that is difficult to solve in a coregistration procedure. While algorithms
like AFNI’s 3dQWarp [33] technically support cross-modal cost functions, the
documentation acknowledges that such usage is rather experimental and in
our experience indeed does not reach submillimetre accuracy. In general, no
algorithm currently exists that corrects non-linear distortions in high resolution
low-contrast images up to the laminar specific level, and works either on partial
or whole-brain images.

One way to search through relevant information in the image domain is to
try and detect the grey-white matter boundary and match this between volumes.
This is using geometric information on top of volumetric information and forms
the basis of Boundary Based Registration (BBR) [69]. A three-dimensional
cortical reconstruction of the grey-white matter boundary is created on a high
contrast anatomical image and serves as a basis for the coregistration. While a
functional image is too low in contrast for generating a cortical reconstruction,
it can be used in the registration procedure. The contrast is sufficient to
optimise the average contrast across the boundary in order to achieve a better
realignment. This was proposed for linear registrations and proven to be an
exceedingly robust method. We here extend BBR to work recursively and
effectively produce a cross-contrast non-linear registration. Our aim was to
provide accurate submillimetre registration for whole-brain or partial brain images.
The algorithms can be performed on the the functional data, without additional
acquisition of additional scans, and without reinterpolation as a result of a
non-linear warping. Importantly, the procedure produces a smooth deformation
field that does not alter the topological properties of the mesh, such that the
resulting surfaces can naturally be used in subsequent automatic layering and
further layer specific analyes [182, 105].

2.2 Methods

Boundary Based Registration (BBR) is based on a cortical construction of the
boundary between the white matter and grey matter, and the grey matter and
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the CSF (pial surface) [69]. This surface is generated on an anatomical scan, as
the contrast of the functional scan may not be good enough for segmentation.
In order to register the two volumes, the constructed surface is moved to
the functional image. The average contrast across the grey-white matter
boundary is computed and used as a cost function to optimise the transformation
parameters of the registration. Versions of BBR are implemented in FreeSurfer
(bbregister) [34] and FSL (flirt -cost bbr) [87]. This method is powerful
enough to be able to register the volumes, based on only a small part of the
brain [69], suggesting that local application can also be successfully employed.
Especially for high resolution (laminar) fMRI, the anatomical and functional
volumes contain detailed information about the gyrification that can be used
for registration. We hence propose to extend BBR with a hierarchical strategy
[31]. By recursively applying BBR at diminishing scales as a series of linear
transformation, the volumes are effectively non-linearly registered.

The way in which the mesh is divided is based on a three-dimensional cuboid
lattice consisting of the set of neigbourhoods N d at various depths d, decreasing
in size. At each depth, N d is divided into eight equally sized cuboids (two
in each dimension) N d+1 until a user specified threshold size is reached. All
vertices that make up the brain mesh are divided over the elements of Vd, the
set of vertices within N d. The number of vertices in each neighbourhood may
well vary between regions.

Registration is performed iteratively, from the largest scale (d = 0) to the
smallest (d = dmax). For each element N d

i , a registration is computed by means
of a boundary based registration algorithm [69] applied to Vd

i . In short, this
is an edge detection algorithm that maximises the average contrast across the
white matter surface. Contrast is defined as the (optionally weighted) gradient
of samples on either side of vertices within the mesh. For the optimisation
procedure we use MATLAB’s gradient descent method fminsearch (default
parameters) to optimise registration parameters as a function of contrast. The
same sampling method and cost function were used as proposed by Greve &
Fischl [69].

Applying the computed transformations directly to Vd could easily ‘break the
mesh’ at the edges of neighbouring regions as their continuity is not guaranteed.
This is a serious problem, as subsequent steps in laminar analysis (like the level set
methods [157]) require the mesh to be a topological sphere: a non-intersection
closed surface without holes. In order to ensure continuity we use a control point
based strategy [31]: let the edges and corners of N d define a deformable lattice.
For each computed transformation in N d, a resulting displacement vector is
assigned to all of its corner points. After all transformations at a depth level are



32 Improved cortical boundary registration for locally distorted fMRI scans

computed, the median is taken of all displacement vectors for each control point,
thus representing a resultant vector based on adjacent neighbourhoods. In order
to further increase robustness (but at the cost of specificity), the displacement
vectors may subsequently be adjusted based on their direct neighbours:

~d = α~d+ (1− α) M(~x), (2.1)

where M(~x) denotes the mean displacement of the neighbourhood. Collins et al.
[31] experimentally found α = 0.5 yields an acceptable balance between local
matching and global smoothness. We recommend higher values for α, as our
primary goal in laminar analysis is the local matching. We suggest additional
ways of increasing robustness in the next section.

As all control points within N d now have displacement vectors associated
with them, Vd can be displaced proportionally to the distance to their closest
control points. A way of describing this is by defining transformation matrix T,
such that it satisfies:

Dd
i = TVd

i , (2.2)

where the set of displacement vectors is denoted by Dd, for which each i’th
element contains 8 vectors, one for each corner of the cube. This is a typical
linear regression equation and could hence trivially be solved for T. However,
a least squares solution is required as the system is overdetermined with eight
corner points and only a [4X4] transformation matrix. This necessarily requires
an approximation of the deformation vectors that may result in discontinuities
with respect to adjacent neighbourhoods. A preferred method is to divide the
cube into six tetrahedra by means of Delaunay triangulation [37] and compute a
separate matrix for each of them. For each tetrahedron, equation 2.2 represents
a determined system, for which the solution for adjacent tetrahedra is guaranteed
to be continuous. Effectively, this division increases the degrees of freedom of
the deformation field to satisfy our requirement of continuity. Having found the
transformations, they can readily be applied to adjust the position of Vd.

This procedure is repeated for all depths levels d. Whenever the number of
vertices in N d is smaller than a user specified minimum, the transformation for
that region is set to the identity matrix.

Robustness

With the exponential increase in number of neighbourhoods as a function
of depth level, the number of registrations easily reaches into the hundreds.
The high number of Degrees of Freedom (DoF) of the algorithm therefore
inescapably increases the probability of misregistrations. The algorithm ensures
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robustness and continuity in several ways, by computing displacement vectors
as a weighted average of all surrounding neighbourhoods, and by an (optional)
additional smoothing of displacement vectors based on adjacent control points,
as mentioned above. Additionally, we compute a transformation within a
neighbourhood not only for the entire neighbourhood, but also for six subregions.
By splitting Vd separately into two in the x, y, and z dimensions, six cuboids
are created for which the registration is repeated. This procedure is illustrated
in Fig. 2.1. The resulting displacement vectors are added to the respective list
for each control point.

21

{

{

Figure 2.1: A schematic of the workflow. First, the volume is recursively broken up into parts,
for which registrations are computed by means of the edge detecting boundary
based registration method. Based on the transformations found in this step, the
second step is the updating of a cuboid lattice. The control points within the
lattice are updated and applied to the boundaries. Specifically, this was performed
based on a tetrahedral division of the cube. For each tetrahedron, a displacement
field was computed and applied to the vertices within the tetrahedron.

Parameters

The algorithm can look for any combination of translation, rotation and scaling
in the x, y, and z dimensions. It will divide the volume until it reaches a
user defined minimum size or number of vertices, and a transformation will
be computed. We here focus on registration in the phase enconding direction
only, i.e. translation and scaling in the y-direction, as this is the most common
type of distortion when an Echo Planar Imaging sequence is used [117]. We set
the minimum size of a neighbourhood to 4 voxels and the minimum number
of vertices to 100. The smoothing factor with respect to adjacent vertices in
the lattice from Eq.2.1 was set to α = 0.9. Experimentally, we have found that
this still yields robust results while still being highly weighted towards specificity.
In contrast, Collins et al. [31] describe an α-level of α = 0.5, which is likely
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to do with the fact that their purpose of template matching and segmentation
prioritises robustness over specificity. While the original implementation of BBR
recommends using subsets of vertices for parts of the algorithm [69], we here
use all vertices at all stages. This may be redundant for registrations at the
large scale, but as it is a small addition in computation time, and because errors
in early iterations may propagate further downwards, we chose to incorporate
all vertices. Finding the best selection of parameters may still require some
iterations for a given data set. It is, however, a substantial improvement with
respect to the arduous job of manually matching small patches of cortex within
a very limited field of view.

Validation

Assessing the quality of the registration performance proved challenging. While
there is a clear theoretical relationship between the distortion size and the
parameters of the acquisition [89], in practice it is difficult to find a gold
standard for the submillimetre accuracy that we are aspiring to. Tools to convert
a field maps to estimates of voxel displacement are usually heavily smoothed
and cannot account for subject movement in the scanner or field changes
between acquisitions. We hence created our own gold standard by acquiring an
undistorted FLASH image and manually distorting it based on a field map. This
way, the exact distortions were known in order to test if we could find them
back with RBR.

A high resolution whole brain multi-echo FLASH image [73] was acquired
at a 3T Siemens Scanner, TR=95 ms, α=20°, bandwidth=170 Hz/px, [0.75
mm]3. GRAPPA was used for three-fold in-plane acceleration. The echo times
ranged from 5.88 ms to 78.96 ms with an echo spacing of 8.12 ms. The average
of the last seven echoes was used, as the first three contained little contrast.
This was accompanied by a whole brain MPRAGE acquisition that was used for
the FreeSurfer cortical reconstruction, TR/TE/TI/α = 2300 ms/3.15 ms/1100
ms/8°, [0.8 mm]3. A field map was acquired to realistically distort the FLASH
image. The resolution was [3.5 mm X 3.5 mm X 2.0 mm], TR/TE1/TE2/α =
1020 ms/10 ms/12.46 ms/90°, bandwidth=260 Hz/Px.

The cortical reconstruction from FreeSurfer’s recon-all [34] was coreg-
istered to the FLASH image using a 6 DoF linear registration with a custom
MATLAB implementation of BBR. In order to distort the cortical surface, a voxel
displacement map (VDM) was computed using SPM field map tools [7]. In order
to taper unrealistically large displacements, and to move non-displaced vertices
away from zero, the VDM was first transformed by a cubic root, after which
it was applied in the anterior-posterior direction to the boundaries. Vertices
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were on average displaced by 2.56 mm (3.4 voxels), which is considerably more
than could be tolerated for a laminar specific experiment. The distribution of
displacement values was bimodally distributed away from zero with the specific
goal to let RBR find the displacement and yield a sharp unimodal distribution
around zero, as close to a delta distribution as possible.

Additionally, RBR was tested on 12 brain scans obtained from a 7T scanner.
We used 3D EPI [142], [0.93 mm]3, TR/TE/α = 2768 ms/20 ms/14°, band-
width=1167 Hz/pixel, phase encoding direction: A -> P, matrix size = 2042,
effective echo spacing = 0.25 ms. The boundaries were created by FreeSurfer
on a whole-brain MP2RAGE (1.03 mm3, TR/TE/TI1/TI2 = 5000 ms/1.89
ms/900 ms/3200 ms) [119]. BBR was performed by bbregister with a full
affine transformation (12 DoFs) on the mean of the functional images and sub-
sequently, the boundaries were imported to MATLAB. Overlaying the registered
boundaries on top of the EPI image showed clear local geometrical distortions
in the phase encoding direction, related to field inhomogeneity [89]. These
distortions were of the order of several millimeters within a single volume. We
corrected this with RBR and investigated its performance.

It must be noted that it is challenging to find an objective metric by which
the quality of the registration could be quantified. The true distorted position is
unknown and methods to approximate do not have the desired submillimetre
specificity that is required. Moreover, if such metric existed, it could itself be
used in the optimisation procedure. An alternative, however, is an investigation
of RBR’s performance on the true volume compared to the performance on the
volume with different levels of added noise. Assuming that the algorithm has
the best performance on the original data, the displacement with respect to
the no-noise condition is expected to increase when more noise is added. Note
that this does not make a statement about the correctness of the result. To
investigate the RBR’s performance in the presence of noise, we added twelve
different levels of white noise to the data, applied RBR and compared the
displacement to the unsalted version. For this, we used the Average Absolute
Distance (AAD) [69], defined to be the average distance that the cortical surface
moves between the two sets of registrations.

2.3 Results

We employed RBR on a constructed gold standard where the exact displacement
was known. By taking an undistorted FLASH image and realistically distorting
the cortical surface by means of a field map, we could test if we could retrieve
the initial position of the boundaries. In Fig 2.2, we present a histogram of
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the displaced boundaries and the registered boundaries, both with respect to
the true position. The registered boundaries clearly show a sharp distribution
centred around the origin (µ = 0.027 mm). The FWHM of the distribution
is 0.49 mm, showing that RBR provides accurate submillimetre registration.
Additionally, Fig. 2.3 shows a cross section (middle slice of the volume) of the
registration.

Vertex Displacement (mm)

Registered

Displaced

-5 50

Figure 2.2: Histogram of the displacement of all 228,208 vertices within a single brain mesh.
The red histogram shows the displacement after fieldmap based distortion with
respect to a gold standard. The green shows the displacement after applying
RBR with respect to the same standard. After registration, the histogram clearly
shows a sharp zero-centered (no bias) distribution.

Phase-encoding

direction
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Figure 2.3: The mid slice of the registration performed on a manually distorted FLASH image
(red boundaries). The registered surface (yellow) overlaps for the larger part of
the brain almost perfectly with the gold standard (green). If the specificity is set
to high values, there is a risk that errors start to appear in some low contrast
regions. This largely depends on the balance between false positives and false
negatives in terms of corrected regions.

In most of the slice (and the volume), the registration accuracy is well
within the submillimetre regime. However, especially in low contrast areas the
algorithm may show some small inaccuracies. This mainly proliferates when
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there is also another gradient in the image (e.g. the pial surface) on which the
algorithm starts to fix the boundaries. This is largely related to the fine line
between obtaining sufficient specificity and overfitting the data.

We performed RBR on a (resting state) dataset intended for laminar analysis
consisting of 11 subjects. The boundaries after a 12 DoF bbregister were
recursively registered to the mean EPI images (0.93 mm isotropic resolution)
and this yielded an updated cortical surface. The new surface followed the
grey matter boundary in the volume visibly better than the unregistered one.
In Fig. 2.4 we present a single slice with both sets of boundaries overlaid on
top of them, illustrating the improvement. We here present the data for a
representative subject, and identical images for all other subjects are presented
in the Supplemental Materials.

Additionally, Fig 2.5 shows the Absolute Average Displacement (AAD) of
the registration on salted images with respect to the registration on the no-noise
volume. Even for highly noisy images, the registration improves somewhat with
respect to the undisplaced boundaries. In the absence of a gold standard model
of the distortions, the monotonic decrease of the AAD indicates that RBR
converges to an optimum as a function of data quality.

Data Availability

All source code for the registration algorithm is freely available under the GPL 3.0
license at https://github.com/TimVanMourik/OpenFmriAnalysis. The
respective modules are also available in Porcupine https://timvanmourik.
github.io/Porcupine, a visual pipeline tool that automatically creates custom
analysis scripts [178]. All code to generate the images in this paper are available
at the Donders Repository https://data.donders.ru.nl/collections/
shared/di.dccn.DSC_3015016.05_558/id/27015532. This also includes
additional movie files that scroll through the volumes, which is highly rele-
vant to fully investigate whole brain registration performance. See Fig. 2.6 for
QR codes to the relevant links.

2.4 Discussion and conclusions

In recent years, laminar specific fMRI analysis has come in reach for human
in vivo experiments. Where standard fMRI analyses are done on a routine
basis, this is hardly the case for layer specific analysis, not least because of the
large amount of manual work that is involved. Aligning volumes to adjust for
subject motion and non-linear distortion is one of the most challenging parts of
the pipeline. With Recursive Boundary Registration (RBR) we here propose a

https://github.com/TimVanMourik/OpenFmriAnalysis
https://timvanmourik.github.io/Porcupine
https://timvanmourik.github.io/Porcupine
https://data.donders.ru.nl/collections/shared/di.dccn.DSC_3015016.05_558/id/27015532
https://data.donders.ru.nl/collections/shared/di.dccn.DSC_3015016.05_558/id/27015532
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Figure 2.4: Distortion correction of 7T 3D EPI data, obtained with 0.93 mm isotropic
resolution. In red, the original brain surfaces are shown after a 12 DoF registration
performed by bbregister. The mesh in green is the updated mesh by means
of the first stage RBR, 2 DoF (scale and translation in the PE direction). The
green boundaries follow the white matter boundary much better. The voxel
displacement map (lower right) shows displacements on the order of several
millimetres. The control point lattice that was used to displace the boundaries
are overlaid onto the displacement map. Similar images for all subjects can be
found in the supplementary materials. For even better inspection, movie files for
all subjects are included in supplementary figure 2.7.

solution to this problem by means of a recursive application of Boundary Based
Registration. By using a control point lattice that forms the basis of deforming
the mesh, the topology of the surface is preserved. This way, the mesh can
easily be fed into next steps in making a cortical layering (Level Set Method)
where it is an absolute necessity that the mesh is not broken as a result of
the transformations. Due to the large number of degrees of freedom that is
required to non-linearly deform a volume, we built in several methods to increase
robustness. Nonetheless, as a mathematical certainty, increasing the sensitivity
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Figure 2.5: The effect of adding noise on the computed average absolute displacement with
respect to a no-noise registration. In the absence of knowledge about the true
distortions, the monotonic decrease of the AAD indicates that RBR converges to
an optimum as a function of data quality.
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Figure 2.6: The links to, respectively, the source code of the algorithms, the analysis scripts
for creating all figures in this paper, and the pipeline tool to easily incorporate it
in one’s custom analysis.

will increase the false positive rate, i.e. the risk of overfitting. It is up to the
user to find the desired balance between them in the settings that we provide to
control this balance.

To ensure the functionality of this method, several conditions have to be met.
A good reconstruction of the cortical surface is essential, as any inaccuracies will
directly affect the contrast estimation and hence the registration optimisation.
As the algorithm is based on edge detection, the volume to which it is registered
needs to have sufficient contrast between white and grey matter. Furthermore,
RBR is recommended to be initialised by a linear BBR registration. While
RBR excels at subtle non-linear deformations, large displacement at any level
may not be found in a rough multidimensional landscape through which the
gradient descent method has to find it way to a minimum. In general, a gradient
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descent method may be difficult to monitor as it is susceptible to local minima
trapping. A more robust algorithm may be a good improvement to RBR (e.g.
using bounded gradient descents, or Monte Carlo sampling). Additional points
of improvement could be the way in which the control point lattice is applied.
While the subdivision into tetrahedra guarantees continuity across segments, it
has a non-symmetrical orientation. The resulting displacement hence may show
a residual bias as a result of the division. A smoother curve fitting technique
to replace the current tetrehedral solution may be a valuable improvement, for
example a diffeomorph version as implemented in ANTS [8].

This algorithm in its current implementation focuses only on the gradient
around the gray and the white matter, without looking at the intensity value.
One could imagine this to be problematic when the RBR is applied to a volume
where a similar gradient of the same direction is present, for example the grey
matter to CSF gradient. The algorithm may easily get ‘confused’ about which
boundary it needs to converge on. In T ∗2 -weighted images in functional studies,
this is not usually a problem as the grey matter has a higher intensity value
than both CSF and white matter. However, in standard anatomical scans with
T1 contrast, this is not the case. As a result, RBR may fail due to the great
similarity of contrast along both sides of the grey matter. An obvious extension
for future use could be to use more prior knowledge about the intensity (as
apposed to merely the gradient), in order to inform the algorithm which boundary
it should use. With the open source and modular way the code is written, the
cost function, optimisation algorithm or deformation algorithm could easily be
replaced with improved versions, to accommodate ongoing development.

A common use of non-linear registration is template matching, for example
in an anatomical-to-MNI normalisation. RBR has little potential for this type of
usage as it is based on finding fine within-subject similarities in a volume, rather
than the coarser type of between-subject similarities. More probable potential
use cases may be could in the matching of subcortical brain structures that are
described with a three-dimensional mesh. Similarly, there is a wide range of
more deformable parts of the body (e.g. liver, heart, stomach, etc.) that might
benefit from solutions like RBR.

We have shown that RBR automates the process of non-linear distortion
correction in order to accommodate an extremely high specificity. This is a next
step in automated processing of laminar analysis and more routine layer research.
We have shown this yields submillimetre accuracy of registration. Finally, we
concur with Saad [149] and Greve [69] in their conclusion to encourage visual
inspection of the registration before reliance is placed on its accuracy.
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2.5 Supporting Information

These are single slice images of the registration performance for all other 10
subjects. More detailed information can be found in the online supplementary
materials.
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Figure 2.7: Distortion correction of 7T 3D EPI data, obtained with 0.93 mm isotropic
resolution. In red, the original brain surfaces are shown after a 12 DoF registration
performed by bbregister. The mesh in green is the updated mesh by means of
the first stage RBR, 2 DoF (scale and translation in the PE direction). The green
boundaries follow the white matter boundary much better. For better inspection,
the online supplemental materials include movie files that scroll through the
volume. The voxel displacement map (lower right) shows displacements on the
order of several millimetres. The control point lattice that was used to displace
the boundaries are overlaid onto the displacement map.
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Abstract

There is converging evidence that distinct neuronal processes leave distinguishable
footprints in the laminar BOLD response. However, even though the achievable
spatial resolution in functional MRI has much improved over the years, it is still
challenging to separate signals arising from different cortical layers. In this work,
we propose a new method to extract laminar signals. We use a spatial General
Linear Model in combination with the equivolume principle of cortical layers
to unmix laminar signals instead of interpolating through and integrating over
a cortical area: thus reducing partial volume effects. Not only do we provide
a mathematical framework for extracting laminar signals with a spatial GLM,
we also illustrate that the best case scenarios of existing methods can be seen
as special cases within the same framework. By means of simulation, we show
that this approach has a sharper point spread function, providing better signal
localisation. We further assess the partial volume contamination in cortical
profiles from high resolution human ex vivo and in vivo structural data, and
provide a full account of the benefits and potential caveats. We eschew here any
attempt to validate the spatial GLM on the basis of fMRI data as a generally
accepted ground-truth pattern of laminar activation does not currently exist.
This approach is flexible in terms of the number of layers and their respective
thickness, and naturally integrates spatial regularisation along the cortex, while
preserving laminar specificity. Care must be taken, however, as this procedure
of unmixing is susceptible to sources of noise in the data or inaccuracies in the
laminar segmentation.
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3.1 Introduction

With functional Magnetic Resonance Imaging (fMRI) neuronal activity in the
brain is measured indirectly via the Blood Oxygen Level Dependent (BOLD)
response. With the emergence of higher static magnetic fields, more powerful
acquisition sequences and better analysis tools, the location of the activation
can be pinpointed more precisely. The attainable spatial resolution can be so
high that voxels are smaller than the thickness of the cerebral cortex. These
improvements have made it possible to investigate specific cortical layers with
fMRI. Typically the human cerebral cortex consists of six cytoarchitectonic layers
[25]. Layer IV is commonly associated with receiving feedforward input from
Layer III from lower cortical areas or from the thalamus [92], while Layers II-III
and VI are implicated in receiving downward information flow (feedback) [3],
which often originates from layer V. Layer I is thin and sparsely populated with
neurons and will probably remain elusive to laminar fMRI.

It is clear that there may be a lot of information about laminar processing
in fMRI measures. The BOLD signal has convincingly been shown to have a
laminar origins in the rat motor- and somatosensory cortices [190]. Further tight
spatial coupling has been demonstrated of blood flow and dilation of arterioles
of layer II/III and orientation tuning in the cat visual cortex [133]. And in
line with previous depth-dependent electrode recordings, the BOLD response
that uniquely reflects trial by trial variance in the alpha and gamma bands
was recently shown to be consistent with infra- and supra-granular origins of
these oscillations [151]. While the details of the neurovascular coupling are still
unknown [173], the cortical BOLD response has been modelled as a function of
depth and could potentially even be deconvolved to get a better estimate of
the origin of cortical activation [118]. The work of Scheeringa et al. suggests
that the laminar BOLD response as measured in humans [100, 141, 114, 99,
e.g.] contains distinguishable laminar responses. But also CBV measurements
show laminar differentiation and is suggested to be even more sensitive than
BOLD [81]. If this is indeed the case, laminar fMRI could give us the means of
measuring directional communication between brain regions. For this reason,
extracting reliable and meaningful layer specific time courses in humans has
been recognised as essential to get a better understanding of the nature of
computations that are performed by the brain [10, 103].

Hitherto little attention has been paid to the question of how to extract
laminar signals from high spatial resolution fMRI data. Voxels are sometimes
manually classified to be part of layers at different cortical depths [161, 134, 114,
e.g.]. Other attempts included drawing lines perpendicular to the surface
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and interpolating the volume, either manually [100], or using a cortical mesh
reconstruction [101, 141, 36, e.g.]. The variation in the distribution of the
histological layers over cortical depth in gyri and sulci was identified as a
challenge for laminar fMRI [145]. This is why several studies chose to analyse
straight pieces of cortex only [100, 134, 36]. The way that the layer thickness
varies over the cortex relates to the curvature and was found to behave according
to an equivolume principle [21, 182], which can be modelled by means of a level
set framework [157], or equivalently with a surface based sampling algorithm
[97].

Even if the cytoarchitectonic layer topography was known throughout the
cortex, it would still be challenging to extract laminar signals. As the fMRI data
will generally consist of cubic voxels, these voxels will almost certainly contain
signal from several layers. Any kind of interpolation will lead to contamination
from neighbouring layers. This effect is reduced with higher resolution, but
the contamination effect in relation to the spatial resolution has never been
quantified. The term ‘laminar resolution’ [174, 80] has been used to roughly
mean sub-millimetre resolution. While it is certainly improbable to get laminar
specific results at lower resolutions, the one millimetre threshold is arbitrary.
Given that the cortex is on average 3 millimetres thick [193, 47], the resolution
requirements may well change dependent on the cortical area considered and
the layers of interest.

Here we propose a method to reliably extract time courses from a cortical
area by using the framework of the General Linear Model (GLM). This offers a
potential solution to the partial volume problem, for the situation in which a
common laminar signal can be assumed over a number of voxels that is large
compared to the number of layers. Instead of interpolating and integrating, we
propose to decompose the layer signals by means of a spatial GLM. While in the
limit of infinitesimal voxel volume all methods should yield the same result, our
method aims to retrieve more accurate results at coarser resolutions. An added
benefit is that the mathematical assumptions underlying the GLM are known
and their validity may be tested within a data set. This work has previously been
presented in abstract form [179]. A similar suggestion for a laminar mixture
model was presented in abstract form by Polimeni et al. [140].

Herein we describe the theory and implementation of the spatial GLM. We
explain in detail the pipeline for laminar data processing and the extraction
of the laminar profile. In order to test the power of the spatial GLM, we
employed a simple simulation to generate a curved model cortex which satisfies
the equivolume principle. This allowed us to set a gold standard on which
we could test our method and compare it with other laminar signal extraction
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methods. In addition, we validated our method using high resolution structural
data in order to show that we could obtain a profile that preserves underlying
anatomical structures. Lastly, we tested whether we could extract robust profiles
across grey matter from structural scans. We anticipate that the main use
of the spatial GLM will be in the extraction of functional time courses, and
have already utilised this technique to detect layer specific feedback signals
in human primary visual cortex [99, 176]. In their respective supplementary
materials, comparisons can be found with existing methods. In the current work
our emphasis is on giving a full description of this technique, and validating it in
situations where a known ground truth can be postulated. We eschew here any
attempt to validate the spatial GLM on the basis of fMRI data as a generally
accepted ground-truth pattern of laminar activation does not currently exist.

3.2 Theory

GLM

The framework of the General Linear Model (GLM) is routinely used in fMRI for
fitting voxel time courses to a temporal model [54]. The GLM framework can
also be used spatially, as illustrated for example by a dual regression [16]. Here
we propose to use a spatial GLM where an n× k design matrix X represents the
layer volume distribution, i.e. the distribution of the k layers over the n voxels
within a region of interest. Every row of X gives the distribution of a given
voxel volume over the layers and every column (regressor) represents the volume
of the corresponding layer across voxels. It is assumed that, within a region of
interest, the layer signal is uniform. The regression of the voxel signals against
the design matrix yields the layer signal. The crucial difference with the current
cortical layer and profile modelling methods is that the GLM decomposes the
voxel signals into the respective layer signals. In contrast, interpolation does not
make an attempt at unmixing the signal and will be subject to partial volume
contamination that will result in signal leakage between neighbouring layers.

For any chosen voxel grid, the design matrix X should be derived from the
location of the layers. These layers are not necessarily identical to architectonic
layers, but instead reflective of a measure for cortical depth. In general the
layer depths are not precisely known. In the present work we estimate the layer
distribution, and hence the spatial design matrix, using the level set method
[182], explicitly described in section 3.2. Layer boundaries constructed with
this method can be viewed as snapshots of a surface moving smoothly from
the white matter boundary to the pial boundary. Since it is assumed that the
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underlying laminar signal is constant throughout a region of interest (ROI), the
voxel signals of the ROI can be regressed against this design matrix, yielding
the estimated laminar signals from the ROI.

A general linear model with a number of voxels n and number of time points
m can be described as:

Y = XB + ε, (3.1)

where, Y, size [n × m], represents a multivariate distribution that is being
modelled by X, size [n× k], the laminar design matrix with k layers. The model
is fit in order to obtain estimates B̂, size [k × m], and these estimates are
chosen such, that the error term ε is minimised. The columns in X (regressors)
essentially represent the (fractional) presence of respective layer over all voxels.
Note that a standard fMRI temporal regression would estimate YT instead of
Y, such that X represents temporal regressors instead of spatial regressors.

For example an Ordinary Least Squares (OLS) estimation can be used for
minimisation. This problem has a unique solution as long as X contains more
rows (number of voxels) than columns (number of layers) and as long X is not
rank deficient. X could be rank deficient when not every layer is represented
in the design, or when the distribution of one layer is a linear combination of
the others. The latter is highly unlikely but could occur when a high number of
layers is computed and neighbouring layers occupy the same space, resulting in a
collinear system. However, the matrix becomes increasingly ill-conditioned when
the number of layers exceeds the number of voxels over the cortical thickness.

It should be noted that the mathematical framework of the GLM comes with
(strong) assumptions. Each measurement is assumed to be independent and
counts as a degree of freedom. The interpretation for MRI is that the intensity
of a voxel should not be predictable based on observing its neighbours. This
assumption is clearly violated in (f)MRI data, and as a result, the degrees of
freedom (DoF) of the system will be overestimated. As a direct consequence, the
standard error is underestimated giving erroneously small confidence intervals.
We hence do not report or show single subject error estimates. Additionally,
the mathematical framework assumes a linear mixture of an uniform effect (i.e.
same layer intensity over space). This may pose severe problems in the presence
of a bias field, intensity fluctuations across a layer, or structural variations such
as cortical veins. Smart vein removal may hence be necessary for laminar fMRI
[100, 50], before a spatial GLM is applied. Lastly, voxelwise errors should follow
a specified distribution: Gaussian in case of General Linear Model, but in reality
potentially following a different distribution (Rician, [71], or more complex when
using parallel imaging techniques).
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A variety of estimation methods can be used to solve this system of equations.
While a simple way of obtaining layer intensities is an OLS estimation, it estimates
B̂ based on an l2-norm. Other regularisation techniques may be employed to
improve the estimation. This can be done by either imposing constraints on
the outcome, or by introducing prior knowledge. The first can be achieved by
including entropy measures in the estimation such as a smoothness constraint
(λ‖∇B‖0) or sparseness constraint (‖B‖0). However, these techniques bias the
result in a certain direction. As this is undesirable for subsequent analyses, we
do not further discuss them in this paper. A way of introducing prior knowledge
into the estimation is by making assumptions about the covariance structure of
the noise. OLS assumes that the voxelwise errors ε are independent, normally
distributed with mean zero, and have constant variance: ε ∼ N(0, σ2I). If a
more general covariance matrix is assumed, ε ∼ N(0,Ω), estimation can be
performed by Generalised Least Squares (GLS):

B̂ =
(
XTΩ−1X

)−1 XTΩ−1Y. (3.2)

This requires an explicit description of the covariance matrix Ω. We propose to
model this as a Gaussian as a function of the relative distance between voxels.
The covariance is one when the distance is equal to zero, leading to a unity
diagonal in Ω, and decreases rapidly for more distant voxels.

Ωi,j = 1
σ
√

2π
exp

(
‖~ri − ~rj‖2

2σ2

)
,

and σ = Lc

2
√

2 ln 2
. (3.3)

Here ‖~ri − ~rj‖ is the distance between voxel i and j. The standard deviation of
the spatial Gaussian is σ. We here explore the impact of different correlation
lengths, Lc, defined as the FWHM for a Gaussian noise correlation. However, it
could be considered to replace it with covariance matrices of different forms,
e.g. the spatial point spread function of an EPI read-out.

Layer localisation

The most laborious part of the spatial regression is the construction of the
layer volume distribution that acts as a design matrix. We used an in-house
implementation of the level set method, originally proposed by [182].

Level set surfaces are a way to represent and manipulate surfaces in volumetric
space. One way to obtain level sets is based on the signed distance function
(SDF). This is the distance of a point to a given closed surface, for points
enclosed by the surface the SDF is negative, for points outside the surface
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it is positive. Points with equal SDF define a surface in volume space. For
such surfaces a mesh representation can be obtained that consists of vertices,
edges and faces, by means of a meshing algorithm (e.g. marching cubes[74]).
The advantage of the SDF is that all computations can be performed in the
same volume space as an MRI image. Lamination of the cortex can thus be
represented in volume space. It is assumed that each laminar surface has a
constant SDF. The level set is the set of corresponding SDF values, labelling
regularly sampled layers between the white matter surface and the pial surface
[182].

The way we calculated the cortical lamination differs slightly from Waehnert
et al’s method [182]. Rather than computing the curvature at the surface, we
compute it voxel based. We consider vectors oriented along the direction of
Laplacian streamlines from the white matter to the pial surface [105]. Based on
the solution of the Laplace equation, we compute the gradient in the Fourier
domain together with a Tukey window. This acts as a low-pass filter, such that
the mesh representation is sufficiently smooth to calculate the mean curvature
(half the surface divergence of the normal). As a result we can define a local
curvature at each point of the cortex, which is then used to construct an
equivolume level set of the different layers by means of the formula as given in
Kleinnijenhuis et al. [97].

Having obtained the layer locations, the distribution of layers over voxels
needs to be computed in order to create the layer volume distribution. This
could be done by directly using a partial volume distribution as proposed by
Koopmans et al.[101]: the average projection of a cube onto a line, for all possible
orientations. Whereas Koopmans et al. [101] use it passively to estimate an
effective resolution of a volume, it can be used actively to compute volumetric
occupation of individual layers. This is directly represented by the integral of
the partial volume distribution., where the integration limits are the distances
provided by the level set. This can be made even more precise by taking into
account the orientation of the voxel with respect to the cortex, instead of using
the average of all possible orientations. Consider a voxel to be occupying a cubic
space, that is intersected by a plane (the cortex) with normal ~n = (nx, ny, nz)
at distance t. The intersection area of the cube and the plane can then be
calculated, for which an algorithm is described in Appendix 3.8. From this,
also the volumetric occupation of a layer over a voxel can readily be computed.
This process is illustrated in Figure 3.1. This procedure easily generalises to
multiple layers being present in a single voxel, as it corresponds to an intersection
with multiple planes. The volumes for the respective layers are hence given by
the integral of the intersection area from one plane to the next. The gradient
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Figure 3.1: The plane of arbitrary normal ~n (here ~n = (nx, ny , nz) = (0.841, 0.480, 0.249))
divides a unit voxel in two parts (red dashed line). As the plane moves in the
direction of its the normal, the area of intersection varies, as indicated by the blue
curve. The volume within the voxel on the left side of the plane is indicated by
the cumulative volume and represented by the purple curve.

estimate is voxel specific rather than layer specific (i.e. planes are assumed to
be parallel) and the same intersection function is used. This is accurate as long
as the voxel length is sufficiently smaller than the radius of curvature.

The laminar time course

Once the layer volume distribution is constructed, it can be applied to MRI data.
For all given voxels within a region of interest, the voxel signal values represent
our measurement data Y. The rows of the design matrix X give the fractions
of the voxel volumes ascribed to the corresponding layer by the layer volume
distribution. The layer estimates B̂ can be obtained by regression of Y against
X, given covariance matrix Ω. In order to obtain a laminar time course from an
ROI in fMRI time series, the regression can be performed sequentially for that
ROI. Note that the unmixing matrix is independent of the temporal signal, so
the regressor calculation needs only to be performed once.

Similarity to existing methods

Hitherto, two main methods of extracting laminar time courses have been used.
In the first one, the cortical surface is represented by two triangular meshes, the
white matter surface and the pial surface. A laminar profile is then obtained by
drawing lines from points (vertices) on one surface to the other. The volume
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projected onto these lines gives a cortical profile. In computing this projection,
the volume has to be sampled by means of some interpolation method. This
approach has been used in a number of implementations [101, 141, 36]. The
second method is a classification of each voxel to be in a given layer based on
the single most likely layer per voxel. The signal is subsequently averaged over
the region of interest [161, 134, 114]. Interestingly, all methods can be seen in
the light of the same mathematical framework.

Interpolating a volume at different cortical depths across a part of the cortex
effectively creates a weighting for all voxels with respect to the layers. The
weighting in this procedure is based on a limited set of vertices that form the
mesh. While it is not guaranteed that all voxels in the region of interest are
equally represented, one could likely assume that in the limit of an infinite
number of lines the result would be similar to our laminar design matrix X.
The way in which the average is taken for all lines is then equivalent to a
multiplication with the data, normalised with respect to the number of voxels:

B̂interpolation = XT ·Y/N. (3.4)

Here B̂, X, and Y are respectively the estimated layer signals, the weighting
matrix, and the voxel signals and have the same dimensions as in Eq.3.1. N is
the number of voxels. We argue that such multiplication with our constructed
design matrix is the best-case scenario of performance of the interpolation
method.

Classification of voxels is a more direct attempt to obtain a layer volume
distribution, with the property that all entries are binary, with exactly a single 1 in
each row. Hence, by definition, the columns are orthogonal, and the average of
the multiplication of an orthogonal design and the data is identical to regression
of the data onto the same design. Therefore, classification can be viewed as a
form of regression, but with a simplified design matrix.

In the limit of infinite resolution, each voxel would fall into exactly one layer
and it can readily be seen that all methods would be rendered equivalent. A
similar scenario presents itself when the cortex is exactly aligned with the layering
and each voxel falls into precisely one layer. The aforementioned methods have
been implemented in a variety of ways. Hence, the benefit of their descriptions
in a consistent framework allows for easy comparison throughout the rest of this
paper.
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3.3 Methods

The performance of our layer extraction method is assessed by means of three
experiments. First, we test the principles of the method on a simulated cortex.
The model cortex has physiologically acceptable folding parameters and its
layering satisfies equivolume conditions. An OLS estimation is used, as there
is no (un)correlated noise added to the system. Secondly, to get a detailed
understanding of the behaviour of the spatial GLM with a high number of layers,
we used high resolution (post mortem) data from the primary visual cortex (V1).
V1 shows a particularly strong layer structure due to the highly myelinated layer
IVc (stripe of Gennari), such that the comparative performance of the methods
could be easily evaluated.Thirdly, as the method is likely to be used on human
in vivo data, we subsequently assessed anatomical profiles for 11 subjects. We
give a detailed account of the influence of the extracted number of layers and
we investigate the performance of different FWHMs that can be used for a
GLS estimation. All layerings were performed on upsampled data of twice the
resolution. As previously described, the best-case scenarios of the other two
methods can be easily characterised in the same theoretical framework as our
proposed method. Hence, in order to make the cleanest comparison between
methods, all extraction methods start from the same layer volume distribution.

• The GLM method: The layer volume distribution is used as design matrix
and regressed against the voxel signals.

• The interpolation method: the same design is used, but normalised
(division of each element by the sum of its column) and multiplied with
the data instead of regressed.

• The classification method: a regression is used , but the layer presence in
the design is redistributed per voxel in a winner-takes-all manner.

Model cortex

In order to most cleanly compare the different methods, we established a gold
standard for cortex layering. We simulated a cortex as a spring-mass system,
capturing the key properties of the cortex. Most importantly, as mentioned above,
the cytoarchitectonic layers of the cortex approximately conserve volume ratio
over sulci and gyri, which has become known as Bok’s principle [21, 182] and is
implemented in CBS Tools [14]. The intention of the simulation was to generate
a layered model cortex that is consistent with the underlying assumptions of the
layer extraction methods, rather than to generate a fully physiologically plausible
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model of the cortex. The equivolume principle leads to the best description of
cytoarchitectonic layering available to date, but still does not precisely capture
the layer locations [181].

Six initially equi-distant layers were generated in a two-dimensional piece
of cortex that was positively and negatively curved, to simulate gyri and sulci
respectively. Note that these layers are not intended to be equivalent to
cytoarchitectonic layers. The layers started out with unequal volumes but were
allowed to evolve until the volumes of all layers were equal, up to a precision of
three orders of magnitude smaller than their size. This is illustrated in Figure 3.2.
A detailed description of the simulation is outlined in Appendix 3.7.

Equi-volume

Simulation
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Figure 3.2: From an initially equidistant mesh, on the left, we let the points on the mesh
rearrange itself in an equivolume manner. The area of a single quadrilateral is
indicated by its colour. The resulting mesh, on the right, is rearranged such that
all quadrilaterals had unit area (±10−3). Note that as a result, the layers start
varying in thickness in the inner and outer bends.

The two-dimensional simulation was first rotated to break alignment with
the voxel grid. Next, it was extruded to the third dimension, and resampled
to a 643 voxel grid. The simulation covered approximately one voxel per layer.
With six layers and an approximate cortical thickness of 3.0 mm [193, 47], the
volume mimicks a resolution of [0.5 mm]3. The outer boundaries from the
simulation, corresponding to the white matter and pial surfaces, were taken
as input for the layering methods. The cortex was divided into six layers and
the layering was performed on upsampled data, a factor 2 in each dimension.
Treating the simulated layers as a gold standard, the signal leakage between
layers can be determined in terms of a spatial point spread function (PSF). The
PSF of all methodologies is determined by simulating volumes in which one
layer is given the value one; the remainder are set to zero. The extent to which
this single layer signal can be retrieved in the correct layer is represented as
a PSF. This analysis was performed on a small part of the simulated cortex
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(ROI shown in Figure 3.3) such that positively and negatively curved regions
were equally represented. In order to investigate the effect of spatial resolution
on the PSF, the simulated data of [0.5mm]3 resolution was downsampled to
[1.0 mm]3. The same boundaries and the same layering methods and signal
extraction procedures were used. No noise was added to the data, so likewise,
we did not model any noise covariance in the regression equation and used the
ordinary least squares solution.

Region of 
Interest

Intermediate boundaries 
created by 

automatic layering

Input layer signal

Figure 3.3

High-resolution data

In order to assess the performance of the layer extraction method, we examined 
a high-resolution post-mortem sample of the visual cortex (V1) of [0.1 mm]3 

isotropic resolution. The thickness of this particular region was measured to be 
between 2 mm and 3 mm. The full experimental setup has been described by 
Kleinnijenhuis et al. [98]. Briefly, prior to MR imaging, samples were fixed (>2 
months), soaked in phosphate buffered saline (>72h) and mounted in a syringe 
with proton-free liquid (~24h). An MGE (multiple gradient-echo) sequence was 
used with parameters: TR=3.2 s; 7 echoes; TE1=3.9 ms; echo spacing=5 ms; 
matrix=250x180; FOV=25x18 mm; TA=612 s. The echoes were averaged and 
bias field corrected.
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The aim was to extract anatomically accurate profiles including the stria
of Gennari, a myelinated band of nerve fibres running parallel to the surface
that is clearly visible in the image. We wanted to investigate the comparative
performance of all methods in a real human cortex, but on clean high resolution
data. This way, there was a clear image of the true profile, and sufficient detail
that should be revealed in the extracted profile. We classified the grey matter
by means of thresholding and manually adapted it to ensure accuracy over the
entire region of interest. The pial surface and the white matter surface were
created based on these segmentations. From these boundaries, the level set was
computed and the layering was performed with 20 equivolume layers. Three
regions of interest were taken, shown in Fig 3.6. They varied in curvature and
respectively contained 1757, 924, and 1246 voxels and were 2.07 mm, 2.09 mm,
and 1.97 mm thick, so this is equivalent to one layer per voxel. The results were
qualitatively compared.

MP2RAGE data

Lastly, the method was applied to extract profiles from in-vivo data. We
examined the cortical profile of the calcarine sulcus in 11 subjects from a T1-
weighted MP2RAGE, acquired with a Siemens 7T scanner, with an isotropic
resolution of 1.03 mm3, TR/TE/TI1/TI2 = 5000ms/1.89ms/900ms/3200ms, of
the calcarine sulcus. The MP2RAGE was chosen for its homogeneous contrast
and sharp transition from white to grey matter, such that the leakage effect to
neighbouring layers could be investigated. All scans were processed by FreeSurfer
[34] by means of recon-all and the boundaries generated were used in our
layer pipeline. We investigated the effect of number of layers by segmenting the
volume into 2, 4, 6, and 8 layers. Additionally, we wanted to test the assumption
of correlated noise that we proposed in order to use generalised least squares.
We compared four different FWHMs for the noise covariance, 0, 1, 2, and 3 mm,
where the 0 mm effectively reduces to an ordinary least squares solution. The
region of interest was a small portion of the V1 label from the Destrieux atlas
that is automatically generated by FreeSurfer [48]. It was trimmed to a small
part around the calcarine sulcus, because a fundamental assumption of the GLM
is that the layer signal estimates are identical across the entire cortex. This
cannot be guaranteed over large patches of cortex, especially because it is known
that the myelination throughout the visual cortex is variable, e.g. higher around
the calcarine sulcus [24]. The number of voxels in the ROI was 2009 ± 494
(µ± σ) and the average thickness was 3.4 mm ± 0.3 mm (µ± σ). An example
for a representative subject is shown in Figure 3.4. The profiles were extracted
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on the same volume on which the segmentation and cortical reconstruction were
performed, so there was no need for image registration.

Figure 3.4: The layering (rainbow colours) and the region of interest (pink) for a representative
subject. A small portion of an anatomically defined V1 region was taken in order
to investigate the cortical profile in the region.

Data Availability

All source code for the spatial GLM is freely available at https://github.com/
TimVanMourik/OpenFmriAnalysis under the GPL 3.0 license. The respec-
tive modules are also available in Porcupine https://timvanmourik.github.
io/Porcupine, a visual pipeline tool that automatically creates custom analy-
sis scripts [178]. All code to generate the images in this paper are available at the
Donders Repository https://data.donders.ru.nl/login/reviewer-27893111
mzQG7aE5xx2F0zOT1U0qmyVS1hC45dADMqqDWUqn3TU.

3.4 Results

We here show the results of a cortical layering on simulated data, human ex
vivo data, and human in vivo data. We compare the extracted laminar signals
for three different methods, the GLM, interpolation, and classification approach.

Model Cortex

The three different layer extraction methods were first applied to the modelled
cortex, in order to estimate a point spread function of the method in ideal
circumstances. The layer profiles of all layers were aligned and averaged and are

https://github.com/TimVanMourik/OpenFmriAnalysis
https://github.com/TimVanMourik/OpenFmriAnalysis
https://timvanmourik.github.io/Porcupine
https://timvanmourik.github.io/Porcupine
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shown in Figure 3.5 for both resolutions ([0.5 mm]3 and ([1.0 mm]3). The full
unaveraged point spread functions are also shown in Supplementary Figure S1
in matrix form. The ideal PSF is a single peak of height one at the origin with
no leakage to neighbouring layers.
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Figure 3.5: The performance of the three different approaches of obtaining layer signal,
represented as a point spread function (PSF) obtained on simulated data. An
ideal PSF would be an unit peak at the origin. The results are shown for
approximate resolutions of 0.5 mm and 1.0 mm, on the left and right respectively.
The GLM approach has a sharper PSF and is able to retrieve more signal, but
potentially at the cost of a small undershoot in neighbouring layers.

For the 0.5 mm resolution volume (i.e. one layer per voxel), the peak of the
distribution for the GLM reaches 92,5%, which is considerably higher than the
75.4% for the classification approach and 68,7% for the interpolation approach.
This means that the latter two approaches respectively lose approximately a
quarter and a third of the signal to neighbouring layers, as opposed to a only
7.5% in the GLM approach. For all methods, the leakage is close to symmetrical.
The small remaining asymmetries are likely to be related to a small imbalance
in proportion of voxels with a positive and negative curvature.

Also for the 1.0 mm scenario, the PSF for the GLM approach is considerably
sharper. The GLM approach peaks with 92.4%, the classification approach
with 56.9%, and the interpolation approach with 49.0%. As expected, the
PSFs for the interpolation and classification approach are less sharp for coarser
resolutions. Surprisingly, the GLM approach peaks higher, but this comes at a
cost: several undershoots are visible in a sinc-like oscillating pattern. Effectively,
this artificially boosts the peak signal by ‘stealing’ it from other layers. The
spatial design matrix is more ill-conditioned as the number of layers is double
the number of voxels over the thickness of the cortex.

The same analysis was repeated without including the gradient estimate in
the layering, and instead using a cubic polynomial approximation for the partial
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volume kernel [101]. The resulting PSFs were identical up to 2% margin, showing
that incorporating this extra type of prior knowledge has merely marginal effects
on the outcome.

High resolution data

The extracted profile of the high resolution data is shown in Figure 3.6, together
with an image of the data in which the region of interest is delineated. The
structure of the cortex is clearly visible in the extracted profiles. It shows the
intensity difference around the stria of Gennari. Additionally, towards the pial
surface there is a drop in intensity of which the anatomical origin is unknown.
Also note the sharp transition at the pial boundary, quickly dropping to almost
zero. The average profiles look like accurate reflections of the ROI, but all
methods performs roughly the same. It should be noted, however, that in all
regions the GLM shows some oscillating behaviour which is likely to be artifactual
to the method. This can easily be related to the sinc-like point spread function
that was computed in the simulation. This effectively represents a kernel that is
convolved with the true profile and thus shows the same oscillatory behaviour,
much related to Gibbs ringing [58]. In particular, the artifacts proliferate at
the edges of the cortex, as they scale as a function of the differences between
neighbouring layers.

MP2RAGE data

The cortical profiles of the primary visual cortex for 11 subjects is shown for a
variety of methods in Figure 3.7. First, the three main methods were compared
based on the average over subjects. The error bars represent the standard error
of the mean. The classification and interpolation approach both show smooth
monotonically decreasing profiles for any number of layers. In all case, the
GLM method estimates the WM signal to be higher and the CSF signal to
be lower than both other methods. This could reflect a lower partial volume
leakage to neighbouring layers, but may be indistinguishable from an edge
enhancing artifact similar to the ones visible in the previous results. Without a
gold standard, this cannot be assessed. In contrast to the two other methods,
the GLM starts showing oscillating behaviour when the cortex is divided into
more layers. In particular, when the artifacts seem to increase dramatically when
the number of layers is higher than the number of voxels. While the average over
subjects is still relatively smooth, the increasing standard errors already suggests
higher subject specific differences. This is especially visible in the subject specific
profiles (second row of Figure 3.7). The highly fluctuating individual profiles for
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Figure 3.6: The layering, the regions of interest, and the extracted cortical profiles for three
regions. While all three methods perform almost identically, there are small
oscillations present in the profiles as produced by the GLM. Especially in the top
layer, the peak is potentially mistakenly higher than both other methods suggest.

8 cortical layers is unlikely to reflect any true underlying anatomical variation.
In general, no method seems to be able to extract anatomical details, such as
the stripe of Gennari. Anecdotally, the stripe is visible in some subjects, but it
does not survive the anatomical variation in combination with the sensitivity
limitations of the layer extraction pipeline.

Lastly, we investigated the assumption of correlated noise in the volume. We
varied the correlation length of an assumed Gaussian noise correlation, performed
a generalised least squares regression, and investigated the average profiles. For
Lc = 0 mm, the solution reduces to an ordinary least squares problem. It can
be observed that for a small correlation length (1 mm), there is only a marginal
difference with no correlated noise at all. With a larger correlation length (2
mm), all profiles become somewhat smoother, but for larger values (3 mm)
results start to wildly fluctuate to the extent that they are uninterpretable. It
can therefore be concluded that GLS should only be used with extreme care, and
that the results with the tested covariance matrices show marginal improvements
at best over OLS.
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Figure 3.7: The obtained profiles for a small piece of the primary visual cortex, based on 11
subjects, for a varying number of layers (columns). In the first row, the three
different methods are compared. The second row shows the individual profiles
for the GLM method, showing that the solution becomes unstable when higher
numbers of layers are used. In the bottom row, different FWHMs are tested in a
generalised least squares solution.

3.5 Discussion and Conclusions

In this study, we propose a new method to reduce the inherent blurring of laminar
profiles of current methods. Instead of interpolating a volume and averaging
over a region of interest, we propose to unmix the laminar signals by using a
spatial General Linear Model (GLM). In order to further reduce partial volume
contamination we propose using the orientation of the voxel with respect to the
cortex to better model the layer contributions to each voxel. While this provides
an additional type of prior knowledge to incorporate into the layer estimation,
the improvements on the layer estimates are marginal. We compute a spatial
Point Spread Function (PSF) of existing cortical signal extraction methods on
simulated data and explore the benefits and caveats of the spatial GLM when it
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is performed on human structural MRI data. On simulated data, we show that
the GLM clearly outperforms existing methods, especially on a coarser resolution.
However, it may be more sensitive to the imperfections of real human MRI data
and result in artifacts in the extracted profile, mainly when a high number of
layers is used. An initial version of this method has been applied to functional
data by Kok et al. [99] and in Van Mourik et al (2018, in prep) [176].

The framework of the GLM is a well described mathematical tool and
many principles transfer directly to our proposed spatial application. The core
assumption of the GLM (as well as of existing methods) is that the laminar
signals across every layer within the ROI are assumed to be constant. This
means that any bias field that stretches through the region of interest may be
detrimental to the results. Another important assumption is the normality of
errors, either uncorrelated in an ordinary least squares estimation, but potentially
correlated for a generalised least squares estimation. This normality is not
guaranteed (and sometimes not even expected) in a laminar GLM, due to the
many different sources of noise. Apart from thermal noise in the data, important
sources can be the presence of e.g. blood vessels that systematically bias some
part of the region of interest. At least as important as noise in the data, is noise
in the model. Whenever the layer specific design matrix does not match the true
underlying structure, (systematic) errors are likely to appear. While the assumed
equivolume model for the cortex is the best description to date, it cannot be
assumed to be a flawless description of the true cortical layering. Additionally,
algorithmic implementations by necessity make numerical approximations that
may induce noise as well. Correct layering also depends on the quality of the
cortical reconstructions that may contain errors, especially in regions where the
cortex is thin (i.e. primary visual or somatosensory cortex), highly myelinated
(i.e. primary areas), or regions of reduced signal (e.g. temporal lobe, but
highly dependent on acquisition). Related to this, there is a high co-occurence
of neighbouring layers in the same voxels, which directly translates into a
high covariance between neighbouring layer regressors. In general, covariance
between regressors may induce anticorrelations, closely related to the well known
anticorrelations found after global signal regression [172]. It should therefore
come as no surprise that we find the point spread function of the GLM to have
sinc-like characteristics and that profiles with many layers (i.e. more heavily
correlated regressors) show oscillating patterns.

It is well known that a temporal design matrix needs to be balanced over
conditions. Conditions needs to be represented equally in the model, or otherwise
the estimation may be biased towards overrepresented conditions. Similarly,
it is important to have a balanced spatial design. If not, the estimation will
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be biased towards the overrepresented layer. This has an immediate practical
implication: our implementation allows for differing layer thicknesses, which
can be useful in order to match the cytoarchitectonic layer thickness. But care
must be taken, as this may introduce a bias towards the thicker layers as they
contribute more to the squared error. We do not provide error margins on our
retrieved layer estimates, as the number of degrees of freedom in our data is
not equal to the number of voxels. A valuable course for further research could
be a more accurate estimation of the true degrees of freedom in order to get a
better handle on the reliability of the extracted layer profiles.

The main caveat of the GLM method is the potential anticorrelation that
is artificially induced in neighbouring layers. This artifact presents itself in
space, but also directly translates into lower temporal correlations between
neighbouring layers. As a result, one may easily conclude that neighbouring
layers are temporally more distinct than is justified. Additionally, this artifact is
amplified when the difference between neighbouring layers is large. Unfortunately
for fMRI, this is mainly at the white matter boundary and the CSF boundary,
and consequently primarily affects the deepest and highest layers. A hypothetical
equal activation over the cortex may thus be amplified to appear like deep and
top layer activation. If an odd number of layers is chosen, effects from both
sides may even amplify to push down every second layer. While an unmixing
model alludes to a superresolution potential, we strongly advise against using it
as such. Using more than one layer per voxel may compromise the stability of
the extracted signals. This is also illustrated by initial use in Huber et al. [81]
where significant noise enhancement is observed compared to other methods.

An interesting extension of our proposed spatial GLM could be a more
seemless integration with a temporal GLM, analogous to the commonly performed
first and second level analysis. This spatio-temporal regression is currently
performed as a two-stage approach, but could also be combined in the form of
a mixture model. This is more powerful due to reduced propagation of errors
[15] and would directly yield task-specific laminar results. As we here focus on
the validation of the single time point scenario, this is outside the scope of this
paper. A different line of improvement could be a more bottom-up approach
with a forward modelling perspective of the same problem: a perspective where
hypothesised laminar signals is multiplied with the layer model and compared
to measured data. We here took the top-down approach by taking an existing
mathematical framework, but experienced artifacts in the result as a consequence
of the model inversion. Building this up in a different mathematical context may
get around these violations of assumptions and provide a formulation that is
closer to the problem at hand. Integrating a spatial component into a temporal
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layer specific hemodynamic forward model [76] could be a interesting starting
point.

Hitherto, a mathematical framework has been lacking which has made it
difficult to assess certainty estimates of laminar signals, which in turn has made
it difficult to apply rigorous statistics. With this work, we hope to provide a
contribution to such a framework in the field of laminar (f)MRI, such that it
can be conducted on a more routine basis. The main use of this technique is
envisioned in fMRI, where better layer extraction will allow a closer examination
of layer specific BOLD in functional MRI. This may give new insights regarding
feedback and feedforward connectivity of cortical areas. The spatial GLM poses
improvements to dealing with the partial volume effect and prevents leakage to
neighbouring layers. While there are several caveats of applying the spatial GLM
on real data, we show that the performance on simulated data is far better than
existing methods. We thus suggest that the price paid for a higher accuracy in
ideal data is a higher susceptibility to less than ideal data.

3.6 Acknowledgements

We thank Michiel Kleinnijenhuis for providing the high-resolution data. We
would like to thank Daniel Gallichan, Martin Havlíček and Ron van den Burg for
the helpful discussions. Tim van Mourik acknowledges support by the Spinoza
grant [SPI 40-118].

3.7 Spring-Mass System

Introduction

The cerebral cortex consists of a convoluted surface of gyri and sulci. There are
accurate models for the gyrification of the cortex as a whole [164] and there
is a description of how the layers within the cortex behave [21]: the volume
ratio between layers is equal for an arbitrarily curved pieced of cerebral cortex.
This is what has become known as the Bok-principle. Here we describe how
to simulate data for a two dimensional system that obeys Bok’s principle by
means of a spring-mass system. A spring-mass system was chosen, because it is
independent of the algorithms by means of which we estimate curvature in the
volume. This makes it ideal benchmark data for the methods presented in the
body of this paper.
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Spring-Mass System

The cortex is modelled by means of a spring mass system. This is an approxi-
mation of the cortex consisting of quadrilaterals. Each quadrilateral consists
of four edges and four vertices, which are the springs and masses respectively.
The collection of springs and masses that form quadrilaterals will henceforth be
referred to as the system.

The system has total energy U . In the present simulation only a single
contribution to the energy is considered, related to the area of each quadrilateral.
More generally, other contributions could be taken into account, for example
relating to the length of each edge:

U = Uarea + Uedge + ... (3.5)

We are looking for the case where the energy is minimised, as this is when the
system has come to rest and all quadrilaterals have reached an equilibrium area.
Note that only the vertices are displaced in the first instance; the edges and
quadrilaterals are formed as a consequence. The energy decreases by moving
the vertices in the direction of the net force applied to them. The force ~Fn on
vertex n is minus the derivative of U with respect to the position ~rn of that
vertex:

~Fn = −∇nU. (3.6)

A quadrilateral Qi is defined to be the space enclosed by four vertices in
two dimensions ~ui, ~vi, ~wi and ~ki, shown in Figure 3.8. Its area Ai is a scalar

Figure 3.8: Quadrilateral Qi, consisting of vertices ~ui, ~vi, ~wi and ~ki.

function depending on the vertices of the quadrilateral, Ai = Ai(~ui, ~vi, ~wi,~ki):

Ai = 1
2[(ui,yvi,x − ui,xvi,y) + (vi,ywi,x − vi,xwi,y) + . . . (3.7)
(wi,yki,x − wi,xki,y) + (ki,yui,x − ki,xui,y)] (3.8)

The vertices ~ui, ~vi, ~wi and ~ki are chosen such that Ai > 0.
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Let Q = {Q1, Q2, Q3, ...} be the set of all quadrilaterals. The energy of the
system is

U = Uarea =
∑

Qi∈Q

Ui (3.9)

where Ui is the energy of quadrilateral Qi

Ui = 1
2kA (Ai −A0)2 (3.10)

such that the quadrilateral energy is a function of the difference between the
actual area Ai and the equilibrium area A0.

Subsequently, the gradient is computed for the energy stored in the system:

∇nUarea = ∇n

∑
Qi∈~Q

Ui =
∑

Qi∈Q

∇nUi. (3.11)

The gradient of a single quadrilateral energy term takes the form:

∇nUi = ∇n
1
2kA (Ai −A0)2 = kA (Ai −A0)∇nAi. (3.12)

Note that ∇nUi can be non-zero only if vertex n belongs to Qn, i.e. if ~rn is one
of the vertices ~ui, ~vi, ~wi or ~ki. To be explicit, let ~rn = ~ui. In two dimensions
∇nAi = ( ∂Ai

∂ui,x
, ∂Ai

∂ui,y
). The two components follow immediately from 3.8:

∂Ai

∂ui,x
= 1

2 (ki,y − vi,y) ,

∂Ai

∂ui,y
= 1

2 (vi,x − ki,x) . (3.13)

Combining equations 3.6, 3.12 and 3.13, the resulting force on vertex n due
to the preservation of volume is

~Fn =
∑

Qi3n

−1
2kA(A0 −Ai) (ki,y − vi,y, vi,x − ki,x) . (3.14)

Here the summation is over the quadrilaterals Qi that contain vertex n, and ~ki

and ~vi are the neighbours of ~rn in Qi. The vertex will come to rest if Ai = A0,
and the strength of the force can be adjusted by parameter kA. All forces are
additive.

This was implemented in C++ as a stand-alone application. The program
reads in a mesh and evolves the vertices until the system comes to rest.

3.8 Orientation dependent partial volume distribution

In order to find out how different laminae are distributed over voxels, it is
important to know the orientation and location of the surface with respect to
the voxels. Here we analytically describe an algorithm to solve this problem.



3.8. Orientation dependent partial volume distribution 69

The intersection of a laminar surface and a voxel is approximated by the
intersection of a cuboid and a plane that are arbitrarily positioned and oriented
with respect to each other.

The voxel grid is given by three primitive lattice vectors { ~a1, ~a2, ~a3}, having
the orientation and length of the voxel edges. The lattice vectors are usually
but not necessarily oriented along the cardinal axes. For a cubic voxel grid with
edge length L the primitive lattice vectors are {Lx̂, Lŷ and Lẑ}. A voxel can
be indexed with three integers mi. The centre position ~m of the voxel is

~m =
3∑

i=1
mi ~ai (3.15)

and the 8 corner positions ~c of the voxel are

~c =
3∑

i=1

(
mi ±

1
2

)
~ai. (3.16)

The voxel volume is V = ~a1 · ( ~a2 × ~a3).
A plane can be defined by a vector ~N . The plane is perpendicular to ~N and

has distance 1/‖ ~N‖ to the origin. The plane is given by all points ~r satisfying

~r · ~N = 1. (3.17)

It is useful to express ~N in terms of reciprocal lattice vectors ~bi:

~N =
3∑

i=1
Ni
~bi. (3.18)

The reciprocal basis vector ~b1 is defined as ~b1 = ~a2 × ~a3/V , ~b2 and ~b3 are
obtained by cyclic permutation. For a cubic voxel grid, the reciprocal basis
vectors are ~b1 = x̂/L, ~b2 = ŷ/L and ~b3 = ẑ/L. By construction ~ai and ~bi are
orthonormal to each other

~ai · ~bj = δij . (3.19)

Points on the four edges of voxel ~m in the direction ~a1 are of the form

~r = (m1 + λ1) ~a1 +
3∑

i=2
(mi ±

1
2)~ai, |λ1| ≤

1
2 . (3.20)

In view of 3.18 the four possible intersection points of ~N with the edges parallel
to ~a1 are given by the four λ1 of the form

λ1N1 = 1−
3∑

i=1
miNi ±

1
2N2 ±

1
2N3. (3.21)
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Analogously the possible intersection points with the edges parallel to ~a2 and ~a3

are given by four λ2 and λ3 values respectively. Of the 12 possible intersection
points, those with |λi| ≤ 1

2 give the actual (at most 6) intersection points. The
area of the polygon connecting the intersection points can be readily computed,
as well as the volume on either side of the plane.

At this point we have expressions for the intersection point that are inde-
pendent of the choice of the voxel edge vectors ~ai. Explicit expressions can
be obtained for the intersection points and intersection area. To be explicit,
consider the intersection of a plane, moving with a given orientation, i.e. ~N = t~n

where t takes arbitrary real values and ~n stays constant. A finite intersection is
only found for the range of t values between the maximum and minimum value
of 1/[

∑3
i=1(mi ± 1

2 )ni].
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3.9 Supplementary Figures

0

0.2

0.4

0.6

0.8

1

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6 CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6 CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6 CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6 CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6 CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6 CSF

WM

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

CSF

G
LM

C
la

ss
ifi

ca
ti

on
1.0 mm0.5 mm
In

te
rp

ol
at

io
n

Figure S1: The point spread functions of all layers for both resolutions and both methods. An
ideal point spread function would look like an identity matrix. This is approached
more by the GLM method for both resolutions.
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Abstract

It is well-known that directing spatial attention towards a particular stimulus
enhances cortical responses at corresponding regions in cortex. How attention
modulates the laminar response profile within the attended region, however,
remains unclear. In this paper, we use high field (7T) fMRI to investigate the
effects of attention on laminar activity profiles in areas V1-V3; both when a
stimulus was presented to the observer, and in the absence of visual stimulation.
Replicating previous findings, we find robust increases in the overall BOLD
response for attended regions in cortex, both with and without visual stimulation.
Interestingly, when analyzing the BOLD response across the individual layers in
visual cortex, we observed no evidence for laminar-specific differentiation with
attention. We offer several potential explanations for these results, including
theoretical, methodological and technical reasons.
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4.1 Introduction

Directing visual attention to a location in the visual field typically improves
behavioral sensitivity to stimuli presented at that location [144, 104, 189, 29, 9,
107]. It is well known that these attentional benefits in behavior are accompanied
by increases in BOLD response in early visual areas (e.g. [23, 55, 96]), but how
top-down processes modulate cortical responses at the laminar level remains
unknown.

It is known from anatomical studies that the human cerebral cortex can be
subdivided into histological layers with different cell types. The cytoarchitectonic
structure varies across the brain and forms the basis of the Brodmann atlas,
but almost all brain areas have six different histological layers [25]. Although
the precise function of each cortical layer remains unclear, their connectivity
profile suggests a division in terms of bottom-up and top-down processing [46].
Specifically, Layer IV and to a lesser extent Layer V/VI are commonly associated
with receiving feedforward drive from Layer III of lower cortical areas or from
the thalamus [92, 32]. Layers I-II and VI, in contrast, are typically implicated
in receiving downward information flow (feedback), which often originates
from layer V [3]. Interestingly, this bottom-up versus top-down connectivity
profile of each of the layers is to some degree paralleled in functional data.
That is, from neurophysiological and neuroimaging work, it is known that
various visual stimuli and tasks can exert differential effects on the various layers
[115, 188, 154, 180, 133]. Intracranial work in monkeys, for instance, shows that
for selective attention and working memory (two functions that are commonly
associated with top-down processes), current source density is increased in deep
and superficial compared to middle layers in primary visual cortex [175]. Similar
layer specific patterns have been shown in animal functional MRI. For instance,
whisker stimulation led to an increase in BOLD response in Layer IV of rat
barrel cortex, before such an enhancement was observed in any of the other
layers, suggesting that layer IV was the first to receive feed forward drive from
lower-level areas [190]. In contrast, subsequent corticocortical connections in
the same task appeared to activate Layers II-III and V in the motor cortex and
contralateral barrel cortex before this affected any of the other layers, suggesting
that these layers were the first to receive feedback signals. To what extent these
results generalize to human cortex, however, remains to be investigated.

Recent advancements in fMRI have made it possible to also investigate the
functional role of cortical layers in humans (e.g. [141, 114, 99]). The human
in vivo resolution with fMRI has increased to submillimetre voxel size. The
thickness of the cerebral cortex varies between 1 and 4.5 millimetres [193, 47],
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suggesting sufficient resolution to characterise activity across the individual
layers. Indeed, some evidence suggests that human cortical activation can be
measured with fMRI on a layer specific basis [99, 122]. For example, illusory
contours, which are commonly associated with top-down processes, appear to
activate the deep layers more than any of the other layers In area V1 [99], and
some findings suggest that also specific activation of the middle layers can be
measured with fMRI in human primary visual cortex [100].

While some neurophysiological evidence suggests a differential involvement
of the cortical layers in top-down attention [129], the effects of attention on
the different layers in human visual cortex has remained unclear. Here, we
examine with fMRI the potential influence of spatial attention on BOLD activity
in the deep, middle and superficial layers in human visual areas V1, V2, and
V3. Participants directed their attention to a cued location, and performed
an attention-demanding task using an orientation stimulus that was shown at
this location, while an unattended grating appeared at a different location of
equal eccentricity. On some of the trials, subjects directed their attention to
the cued location in anticipation of the stimulus, but no stimulus appeared
at this location. Interestingly, although we observed a reliable increase of the
overall BOLD response with attention across all layers, both with and without
a stimulus present, we observed no differences in activation level between the
layers due to attention. We provide several reasons for these surprising findings
in the Discussion.

4.2 Methods

Participants

Nineteen healthy adults (aged 22-27, eight female), with normal or corrected-
to-normal vision, participated in this study. All participants provided written
informed consent in accordance with the guidelines of the local ethics committee.
Two subjects were excluded from analysis; one subject was excluded due to
insufficient (chance-level) performance on the attention task, and another due
to weak retinotopic maps. The remaining data from 17 subjects were analyzed.

Experimental design and stimuli

Observers viewed the visual display through a mirror mounted on the head coil.
Visual stimuli were generated by a Macbook Pro computer running MATLAB
and Psychophysics Toolbox software [22, 137] and displayed on a rear-projection
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screen using a luminance-calibrated EIKI projector (resolution 1,024 X 768 pixels,
refresh rate 60 Hz).

Participants were required to maintain fixation on a central bull’s eye target
(radius: 0.25°) throughout each experimental run. Each run consisted of an
initial fixation period (3000 ms) followed by 32 stimulus trials (average duration:
4.7 seconds). Trials were separated by inter-trial intervals of variable duration
(1000-2500 ms, uniformly distributed across trials). Each trial started with
the presentation of a central attention cue (800 ms). This was followed by
a delay period of variable duration (0-5000 ms; drawn from an exponential
distribution to ensure a constant hazard rate), after which the two orientation
stimuli appeared on the screen (500 ms). The orientation stimuli were followed
by a response window (1300 ms), in which the fixation target turned orange.

Stimuli were two counterphasing sinusoidal gratings of independent orien-
tation (~45° or ~135°; size: 7°; spatial frequency: 1 cycle per °; randomized
spatial phase; contrast: 50%; contrast decreased linearly to 0 towards the edge
of the stimulus over the last degree), centered at 5° to the left and right of
fixation. We used a compound white/black cue consisting of two dots (dot size
0.25°) that straddled the fixation point (0.8° to the left and right of fixation)
to indicate with 100% validity which of the two gratings should be attended
[85]). Subjects were instructed to attend to the same side of fixation as either
the white or black dot in the compound cue.

Participants were instructed to detect a small clockwise or counterclockwise
rotation in the orientation of the grating at the attended location with respect to
a base orientation at 45° or 135°. The size of rotation offset was adjusted with an
adaptive staircase procedure using QUEST [184], such that participants detected
approximately 80% of the offsets correctly. An overview of the experiment is
shown in Fig. S1.

All but one participants completed 18 stimulus runs. The remaining partici-
pant completed 12 runs due to equipment failure.

Retinotopic maps of visual cortex were acquired in a separate scan session at
a 3T scanner using conventional retinotopic mapping procedures [156, 39, 44].

MR data acquisition

Functional images were acquired on a Magnetom Siemens 7T scanner with
a 32-channel head coil (Nova Medical, Wilmington, USA) combined with
dielectric pads [166], using a T ∗2 -weigthed 3D gradient-echo EPI sequence [142]
(TR/TE/α=3060 ms/20 ms/14°, 72 slices oriented orthogonally to the calcarine
sulcus, voxel size [0.8 mm]3, FOV: [192 mm]2, GRAPPA factor 8).
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800 ms

0-5000 ms

500 ms

Response window: 1300 ms

1000-2500 ms

2/3 1/3

Cue: Attend Right

Figure S1: Stimuli and experimental procedure. Example of a trial sequence from the experi-
ment. Subjects fixated a central bull’s eye target while gratings of independent
orientation (± 45°) appeared in each hemifield. A compound black/white cue
indicated whether subjects should attend to the left or right stimuli; in this example,
the white circle indicates ‘attend right.’ Subjects had to discriminate near-threshold
changes in orientation of the attended grating with respect to the closest diagonal.
In one-third of trials, no stimuli appeared at either location. Red circles depict the
attended location and were not present in the actual display.

Gradient maximum amplitude was 40 mT/m (in practice, however, this
maximum wasn’t reached), the minimum gradient rise time was 200 µs, and
the maximum slew rate was 200 T/m/s. Shimming was performed using the
standard Siemens shimming procedure for 7T. There were 18 runs of 72 ± 4
volumes. As the lengths of the events and the inter trial interval were of unequal
length, there was a small variation in the number of volumes per run.

Finger pulse was recorded using a pulse oximeter affixed to the index finger of
the left hand. Respiration was measured using a respiration belt placed around
the participant’s abdomen.

Anatomical images were acquired using an MP2RAGE sequence [119] [0.75
mm]3, yielding two inversion contrasts (TR/TE/TI1/TI2 = 5000 ms/1.89
ms/900 ms/3200 m).

In a separate session prior to the main experiment, a retinotopy session
was conducted at a Siemens 3T Magnetom Trio scanner. A high-resolution
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T1-weighted anatomical scan was acquired (MPRAGE, FOV 256 × 256, 1 mm
isotropic voxels) at the start of the session. Functional images were subsequently
collected using T∗2-weighted gradient echo EPI, in 30 slices oriented perpendicular
to the calcarine sulcus (TR/TE/α = 2000 ms/30 ms/90°, FOV = 64 × 64, [2.2
mm]3 isotropic resolution).

Functional MRI preprocessing

Data preprocessing Data were corrected for subject motion using SPM with
the mean functional volume across time as a reference [53]. Residual motion-
induced fluctuations in the BOLD signal were removed through linear regression,
based on the alignment parameters of SPM. Scanner drifts were corrected via
linear regression with high-pass filter regressors to filter out frequencies below
1/64 Hz. Pulsating signals as a result of the respiratory and cardiac cycle
were removed as follows. The cardiac/respiratory peaks were automatically
detected from the physiological recordings using in-house interactive peak-
detection software, and manually corrected where needed. With a custom
MATLAB implementation of RETROICOR [59], fifth order Fourier regressors
were constructed for heart rate and respiration and subsequently removed from
the functional images via linear regression. A small part (10% of respiratory
measurements, and 18% of heart rate measurements) was of insufficient quality
and could not be used in this analysis. Functional data for these time frames
were used in the main analysis but uncorrected for cardiac and respiratory noise.

The functional and anatomical scans were brought to the same space by
registering the anatomical surface from the retinotopy session to the mean
functional volume using boundary based registration (BBR), implemented in
FreeSurfer’s bbregister [69]. All registration results were inspected and
manually refined when necessary. Where needed, registration was improved
by an additional pass of BBR using an in-house MATLAB implementation.
Local distortions in EPI due to field inhomogeneity were corrected by means of
recursive boundary registration [177], which recursively applies BBR to small
portions of the cortical surface to correct topology locally by means of optimizing
the grey-white matter contrast along the surface.

Because of temporal changes in magnetic field inhomogeneities, local topol-
ogy slightly changed over the course of the entire session. For this reason, the
18 functional runs obtained for each subject were first divided in three groups
of each 6 contiguous runs, and then each group was pre-processed separately.
Time courses were subsequently concatenated before entering the main analyses.
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Regions of Interest  Regions of interest (areas V1, V2, V3) were defined on 
the reconstructed cortical surface using standard retinotopic mapping procedures 
[156, 39, 44]. After identifying areas V1-V3, data were smoothed along the 
reconstructed cortical surface with a Gaussian kernel (FWHM: 4 mm). The 
smoothed version of the data was only used in region of interest selection, 
and not in the main analysis. In each area, we then selected the 600 vertices 
that responded most strongly to the stimulus (shown on the cortical surface in 
Supplementary Figure 4.7). The selected vertices were resampled from the 
cortical surface back to subject space by means of FreeSurfer’s label2vol. 
T-values of selected voxels (µ ± σ) were V1: T = 2, 989 ± 0.854, V2: T = 2.317 
± 0.689 and V3: T = 2.117 ± 0.713). Note that the selection of voxels based on 
visual activation per se is orthogonal to the analysis of interest, which addresses the 
effects of attention on individual layers in cortex. Control analyses verified that our 
results were not strongly affected by the number of vertices selected for 
subsequent analysis (See Supplementary Figures).

Cortical profile extraction

Layer specific signals were obtained by means of a layer specific spatial General 
Linear Model (GLM) as proposed by [179] and briefly described in [99]. 
Specifically, we applied the level set method [157] on the reconstructed cortical 
surface [34] to create a cortical layering of three equivolume layers, following 
the procedures described in [182]. The gradient and the curvature of the cortex 
were defined as a function of Laplacian streamlines in the grey matter as this 
more naturally follows the structure of cortical columns [105]. Partial volume 
inaccuracies were adjusted for by explicitly taking into account the orientation of 
the voxel with respect to the cortex [179]. This procedure enabled us to divide the 
gray matter in three equivolume cortical layers, which amounts to roughly one 
voxel per layer. We additionally defined a volume on either side of these three 
cortical layers to capture signals for white matter and cerebrospinal fluid. On the 
basis of these definitions, we then created a laminar (spatial) design matrix. By 
regressing this design matrix against the functional data within an ROI, we 
obtained laminar time courses. In the regression, we used generalised least 
squares to account for spatial covariance in the noise. The voxel-to-voxel 
covariance matrix was defined based on Gaussian noise spread (FWHM 1.41 
mm) between neighbouring voxels.
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Statistical Analyses

Temporal linear regression was used to compare between the experimental 
conditions. Regressors were created as follows. The stimuli appeared during 
the stimulus window on 2/3rds of trials, which were modeled with a single 
regressor (stimulus on). The remaining stimulus windows were also modeled 
with a regressor (stimulus off ). In addition, attention could either be directed 
to the left or right visual field; these conditions were each modeled with a 
regressor. We so obtained four regressors for each of the conditions of interest. 
To remove any potential influence from the anticipation period, i.e. before 
stimulus presentation, we additionally included separate regressors for each of 
these four factors during the anticipation window. We used a canonical HRF 
(parameters: time-to-peak-parameter: 5 second) to model the fMRI responses. 
To verify the appropriateness of this function, a finite impulse response (FIR) 
analysis [93] was performed using the data from four pilot subjects (not included 
in the current study). Based on this pilot data set, temporal or dispersion 
derivatives were not included into the statistical model. The baseline signal 
of each run was captured by adding a regressor column of ones for each run 
separately. As described above (Sec. 4.2), the data were pre-processed by means 
of nuisance regression. This was performed by adding the nuisance regressors 
to the design matrix, effectively adjusting for the statistical loss in degrees of 
freedom as a result of nuisance regression. The reference of one percent signal 
change was the height of a peak of a two-second-long isolated event [124].

The temporal regression was performed on the previously extracted layer-
specific time courses. The obtained parameter estimates were divided by their 
baseline estimates, in order to convert them to percent signal change. The 
values in percent signal were compared at the group level by means of ANOVAs 
and t-tests as appropriate. As the experiment was left-right symmetric and we 
found no differences between hemispheres in the analyses of interest, the 
hemispheres were treated as two measurements per participant.

Code availability

All functions for laminar analysis that are mentioned here are available on 
https://github.com/TimVanMourik/OpenFmriAnalysis. Custom analysis 
scripts are available on request. The analysis scripts were made with Porcupine 
pipeline software available on http://timvanmourik.github.io/Porcupine 
[178].

https://github.com/TimVanMourik/OpenFmriAnalysis
http://timvanmourik.github.io/Porcupine
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4.3 Results

Subjects generally performed well at the orientation discrimination task. The
mean orientation discrimination threshold across participants was 6.6°, and
behavioral performance was quite stable across runs.

Spatial attention increases fMRI response amplitudes

First, we determined whether directing attention to a spatial location led to
stronger overall responses in the visual cortex. Regions of interest consisted of
voxels that were significantly activated by the stimulus in all layers of areas V1,
V2, and V3 (see Methods). We compared the amplitude of the BOLD response
with and without attention, for trials in which a stimulus was presented and
those in which no stimulus appeared (see Fig. S2). Data were analyzed using
a general linear model with area, attention (attended vs. unattended), and
stimulus (present vs. absent) as factors (see Methods). We first focused on the
effects of attention per se. Attention significantly enhanced the BOLD response
at the attended location in areas V1-V3 (effect of attention, F(1, 16) = 43.4, p
= 6.36·10−6), with a trending increase in attention-based activity for higher-level
areas (interaction between attention and area, F(2, 32) = 2.63, p = 0.088).
The mean effect sizes (in percent signal change) were 0.41%, 0.64% and 0.59%
for V1, V2, and V3 respectively, and slightly stronger to those reported before
[126, 85]. Next, we investigated whether the effects of attention depended
on the presence of a visual stimulus. Specifically, we compared attentional
effects between trials in which observers were expecting a stimulus but none was
presented, and trials in which the stimulus did appear on the screen. Replicating
previous reports [96], the effect of attention in areas V1-V3 was not significantly
different in the absence compared to presence of visual stimulation (two-way
interaction between and attention and stimulus, F(1, 16) = 0.26, p = 0.585),
with no reliable change across areas (three-way interaction between stimulus,
attention and area, F(2, 32) = 0.026, p = 0.901). Thus, attending to a spatial
location enhances the BOLD response at that location, even in the absence of
visual stimulation.

Spatial attention increases responses across the layers

Next, we asked whether attention led to changes in the pattern of activity
across cortical layers in these areas. We used a spatial general linear model (see
methods) to first characterize activity in each of three distinct cortical layers.
Data were subsequently analyzed using a temporal general linear model with
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Figure S2: Amplitude of the BOLD response for attended and unattended regions in areas
V1-V3. Red lines indicate the attended condition, blue the unattended. The top
lines (circles) show the response when a grating was presented, the bottom lines
(triangles) when no grating was presented, at the attended or unattended loca-
tion. Response amplitudes were significantly higher for attended than unattended
locations and stimuli. Error bars indicate ±1 SEM.

attention, stimulus, area, and layer as factors (see Methods). Consistent with
previous studies [100, 141], we found a general increase in BOLD response from
white matter to pial surface (see Fig S3, overall effect of layer, F(2, 32) =
12.5, p = 9.85·10−5). This increase in BOLD response with decreasing distance
to the pial surface was reliably larger in the presence of a stimulus (two-way
interaction between layer and stimulus, F(2, 32) = 61.1, p = 1.00·10−11),
and was significantly different between the three areas (three-way interaction
between layer, stimulus, area: F(4, 64) = 3.33, p = 0.015; post hoc analyses
revealed a trending larger effect for area V1 compared to V2 (T(16) = 2.11, p
= 0.051), and a larger effect for area V2 compared to areas V3 (T(16) = 3.37,
p = 0.0039). This tendency of the BOLD response to increase from lower layers
to higher layers should be interpreted with caution, however, as blood flows from
the gray-white matter boundary towards the pial surface. Hence, any change in
BOLD response that arises in layers V-VI will automatically affect the BOLD
response in downstream layers. This accumulation of signal may also result in a
larger slope of activation through the layers for larger effects with equal laminar
activation, thus explaining the greater layer by stimulus interaction in earlier
visual regions. In contrast to the layer-specific increase in BOLD signal when
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presenting a stimulus, we found no significant change in the effects of spatial
attention across the layers (two-way interaction between layer and attention, F(2,
32) = 2.33, p = 0.114). This may reflect equal activation of all layers, or a rather
shallow slope as a result of low attentional effect. Next, we determined whether
the layer-specific increase in BOLD signal with attention was distinct from the
observed stimulus-based effects. The attention-based increase in activity was
indeed reliably different from stimulus-driven changes in layer response (post
hoc comparison between layer by stimulus effect and layer by attention effect;
T(16) = 4.94, p = 1.47·10−4). However, this effect should be interpreted with
caution, as the strength of the layer responses is tightly coupled to the strength
of the main effects. In addition, there was no reliable difference between the
effects of attention versus stimulus between any of the three layers (three-way
interaction between layer, stimulus and attention, F(2, 32) = 1.69, p = 0.200).
Control analyses established that these results were not strongly affected by the
number of voxels included in the analyses (Supplementary Figures S1-S2), nor
by the number of layers analyzed (Supplementary Figure S3). In addition, these
results did not qualitatively change when layer activation profiles were defined
using volume interpolation (Supplementary Figure S4). Moreover, combining
the anticipation (i.e., time frame prior to when a stimulus could appear, see
Figure S1) and stimulus windows in the analyses did not reliably affect any
of these results (Supplementary Figure S5). Thus, while the overall effects
on BOLD activity of both visual stimuli and attention were rather robust and
similar to previously reported values for visual cortex [96, 85, 100], no differential
pattern of activity was observed between these two processes across the visual
cortical layers.
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Figure S3: Layer-specific amplitude of the BOLD response in the experiment in areas V1-V3.
Circles indicate when a grating was presented, squares depict when no grating
was presented, at either the attended (red) or unattended (blue) location. When
a stimulus was presented, activation reliably increased towards the pial surface.
Attention significantly enhanced the BOLD response across all layers. Error bars
indicate ±1 SEM.
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4.4 Discussion

This study investigated the effects of spatial attention on the BOLD signal
measured from individual layers in early visual cortex. Focusing first on the
overall amplitude of the BOLD response in all layers combined, we found that
attending to a stimulus reliably and substantially increased the BOLD signal in
early visual areas, both when a stimulus was presented to the observer and in
the absence of physical stimulation (cf. [96, 126, 106]). Moreover, and much
in line with earlier results on layer-specific activation patterns in visual cortex
([141, 100]), we observed a general increase in activation towards the superficial
layers - one that is commonly explained by gradient echo being more susceptible
to the draining veins on the pial surface. Interestingly, and much to our surprise,
we observed no differential activity in the individual layers when comparing
between top-down (attention-driven) and bottom-up (stimulus-driven) activity
- a finding that stands in notable contrast to previous observations [99]. We
identify several potential reasons for this absence of layer specific differentiation
that we outline and discuss below.

One possibility is that our data are simply insufficiently robust for showing
a significant difference in activity across depth between the two conditions. It
is well known that the BOLD signal includes multiple sources of noise related
to both MRI scanner and participant, and this holds especially true for signals
recorded at the sub-millimeter scale. For example, at a resolution this high, even
the smallest movement of the participant may cause additional blurring of the
data, with potentially detrimental effects on the signal-to-noise ratio. For this
reason, we collected data from 17 participants - a sample size much larger than
typical in attention-based fMRI studies at standard spatial resolution (cf. N=4-6
in[96, 94, 85]), and it is even in the larger range for layer-based fMRI studies at
high resolution (cf. N=6 in [141], N=4 in [122], N=10 in [99]). To minimize
the effects of various sources of noise, we took great care in measuring and
removing physiological artifacts, and further improved existing layer extraction
techniques by developing a novel spatial general linear model that separates
laminar signal from different layers instead of sampling a mixed interpolation
of the layers. Additionally, we ensured that similar results were obtained using
more conventional layer-extraction procedures. Indeed, the combined success of
these procedures is well illustrated by the effect sizes observed in the current
study for both stimulus presentation (4.5%, 3.3%, 2.8% in V1, V2 and V3) and
attention (0.41%, 0.64%, 0.59% in V1, V2 and V3), which are comparable or
higher to those reported in previous publications [126, 85]. There are, however,
some differences in experimental design between our study and previous laminar
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investigations that could potentially account for the incongruity in results. 
Because we were interested in the degree to which top-down processes could 
be dissociated from feed forward stimulation with fMRI, we directly contrasted 
between these two conditions in our analyses. Previous studies, on the other 
hand, have focused on top-down activity in isolation (e.g. [122, 99]), or used 
multi-voxel pattern analyses - rather than overall BOLD amplitude, to compare 
between conditions [122]. [99], for example, directly compared between the 
overall activation levels in individual cortical layers, and found a significant 
difference in BOLD activity due to recurrent signals that were evoked by an 
illusory stimulus. It will be interesting for future studies to address the degree 
to which these experimental factors can account for the disagreement in results 
between our and previous work.

An alternative explanation for the incongruity in results could lie in attention 
itself, which may be mediated by mechanisms distinct from previously inves-
tigated processes. That is, previous work using high-resolution fMRI focused 
not on spatial attention, but rather on figure-ground segregation [99] and other 
non-classical receptive field effects in cortex [122]. It is conceivable that these 
modulatory processes operate on the individual cortical layers in a manner dis-
similar from the attentional mechanisms studied here. It is known from primate 
studies, for example, that attention increases the response gain of neurons in 
visual cortex [169, 120] - such an increase in attentional gain could lead to 
general enhancements in neural activity irrespective of cortical layer, as we have 
observed here.

Regardless of the potential reasons for the disparity between current and 
previous results, we believe our study presents an important message to a field 
that is currently in its nascent stages of development. We hope that the results 
and procedures detailed here will help move the field forward and resolve which 
experimental parameters are paramount, and which are not, to detecting 
differential activity between individual layers in human visual cortex with high-
resolution fMRI.
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Figure S1: Control analysis of an ROI with the 300 highest activated vertices.
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Figure S2: Control analysis of an ROI with the 900 highest activated vertices.

Deep Middle Superficial Deep Middle SuperficialDeep Middle Superficial
-2%

0%

2%

4%

6%

-2%

0%

2%

4%

6%

-2%

0%

2%

4%

6%

Grating Present, Attended
Grating Present, Unattended
Grating Absent,  Attended
Grating Absent,  Unattended

Grating Present, Attended
Grating Present, Unattended
Grating Absent,  Attended
Grating Absent,  Unattended

Grating Present, Attended
Grating Present, Unattended
Grating Absent,  Attended
Grating Absent,  Unattended

V3V2V1

P
e
rc

e
n
t 
S

ig
n
a
l 
C

h
a
n
g
e

Figure S3: Control analysis of an ROI with the 600 highest activated vertices, within each of
4 layers.

Figure S1-5. Layer-specific amplitude of the BOLD response in areas V1-V3.
Figures S1 and S2 show stimulus and attention-based effects across layers after
selecting, respectively, the 300 and 900 most activated vertices (cf. Fig. S3
in the main text). Figure S3 shows results after defining four cortical layers,
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Figure S4: Control analysis of an ROI with the 600 vertices highest activated vertices, where
the laminar signal was obtained by means of interpolation instead of a laminar
spatial GLM.
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Figure S5: Control analysis of an ROI with the 600 vertices highest activated vertices, where
the signal from the anticipation window was added to the signal from the stimulus
window.

rather than three, and Figure S4 depicts results obtained from interpolation
instead of a laminar spatial GLM. Error bars indicate ±1 SEM. For figure S5, the
signal from the anticipation window was added to the signal from the stimulus
window. In all Figures, presenting a stimulus (circles) resulted in a reliable
increase in BOLD response from deep to superficial layers. The BOLD response
was significantly enhanced for attended locations (red) compared to unattended
location (blue) across layers, both when a stimulus was presented and in the
absence of visual stimulation. There were only two instances where significance
changed compared to the layer analyses that are presented in the main text.
The Attention by Layer interaction was not significant in the main analysis (p =
0.114), but was significant in the control analysis when interpolation was used
(p = 1.50·10−4) and when the signal from the anticipation window was added
(p = 0.019). While the Stimulus by Layer by Area interaction was significant in
the main analysis (p = 0.015), this interaction failed to reach significance after
selecting the 900 most activated vertices (p = 0.12), or when repeating the
analysis using four (rather than three) layers (p = 0.056). All other reported
results are qualitatively similar to the findings in the main text.
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Figure S6: Example of Regions of interest on the inflated cortical surface for a representative
subject. The label contours from top to bottom show dorsal V3, V2, and V1 and 
ventral V1, V2, and V3, in both hemispheres. The 600 most activated vertices 
(highlighted) per region where selected for the main analysis, the 300 and 900 
vertices for control analyses in order to show that the effects are independent of 
size of region of interest.
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Abstract

The field of neuroimaging is rapidly adopting a more reproducible approach to
data acquisition and analysis. Data structures and formats are being standardised
and data analyses are getting more automated. However, as data analysis
becomes more complicated, researchers often have to write longer analysis
scripts, spanning different tools across multiple programming languages. This
makes it more difficult to share or recreate code, reducing the reproducibility
of the analysis. We present a tool, Porcupine, that constructs one’s analysis
visually and automatically produces analysis code. The graphical representation
improves understanding of the performed analysis, while retaining the flexibility of
modifying the produced code manually to custom needs. Not only does Porcupine
produce the analysis code, it also creates a shareable environment for running
the code in the form of a Docker image. Together, this forms a reproducible way
of constructing, visualising and sharing one’s analysis. Currently, Porcupine links
to Nipype functionalities, which in turn accesses most standard neuroimaging
analysis tools. Our goal is to release researchers from the constraints of specific
implementation details, thereby freeing them to think about novel and creative
ways to solve a given problem. Porcupine improves the overview researchers
have of their processing pipelines, and facilitates both the development and
communication of their work. This will reduce the threshold at which less
expert users can generate reusable pipelines. With Porcupine, we bridge the gap
between a conceptual and an implementational level of analysis and make it
easier for researchers to create reproducible and shareable science. We provide
a wide range of examples and documentation, as well as installer files for all
platforms on our website: https://timvanmourik.github.io/Porcupine.
Porcupine is free, open source, and released under the GNU General Public
License v3.0.

https://timvanmourik.github.io/Porcupine
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5.1 Introduction

The field of neuroimaging is rapidly adopting a more reproducible approach to
data acquisition and analysis. Especially in recent years, a strong movement for
conducting better documented and more reproducible science can be observed.
Advances have been made in terms of openly sharing data (e.g. OpenFmri,
[139]), standardizing data formats (BIDS format [65]), and facilitating more
automated pipelines [48, 63, 86]. These initiatives facilitate increasing global
scientific communication and collaboration, that is paramount in the age of big
data.

As a result of the increasing complexity of analyses and the wide variety of
different tools, researchers often have to write custom scripts for combining
different software packages, often in different programming languages. As an
extra obstacle, many tools have external dependencies, intricate installation
procedures, or different file formats for the same type of data. Furthermore,
the sharing initiatives usually have a stronger focus on sharing data (Human
Connectome Project [42], NeuroVault [67]) instead of code, such that analysis
scripts still have to be recreated based on the method section of a paper. All
these factors negatively affect the reproducibility, documentation, and in the
worst case correctness of the analysis [131].

A considerable mastery of coding is required for analysing fMRI data. The
conceptual side of understanding all preprocessing steps is not trivial, but
converting this into a working pipeline can be an arduous journey. The necessary
programming skills are not usually the prime focus of a brain researcher’s skills
or interests, but they are a necessity for completing one’s analysis. Consequently,
scripting a pipeline that covers all high-level and low-level aspects is daunting
and error prone. As a result, there is a considerable risk of ‘hacking’ an analysis
pipeline together, sacrificing a reproducible approach. So as a researcher, how
do you start an analysis? It is easiest to start with visualising the steps of your
analysis pipeline.

In an increasingly complicated analysis environment there is a strong need
for tools that give a better oversight of these complex analyses, while retaining
the flexibility of combining different tools. A notable effort to integrate different
tools is Nipype [63], that has a Python interface to existing tools from all
major MRI analysis packages. However, this still requires non-trivial Python
scripting. Furthermore, Nipype is only able to visualise a workflow after it has
been manually scripted [43].

Here we detail our solution to these problems, an open-source software
program we call Porcupine: ’PORcupine Creates Ur PipelINE. Porcupine allows
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the creation of neuroimaging pipelines by means of a graphical user interface
(GUI). After graphical pipeline definition, Porcupine in turn creates the code that
programmatically defines the pipeline. Additionally and without any additional
overhead, we supply a Dockerfile (https://www.docker.com) that automati-
cally builds the run environment for the pipeline. This not only facilitates sharing
the pipeline, but also ensures its reproducibility [20]. We provide an extensive
list of examples and documentation on our website, as well as the possibility to
upload one’s custom pipeline to create a community driven library of analyses.

By implementing an intermediate visual step in the generation of prepro-
cessing workflows, Porcupine allows the user to focus on the logical flow of the
preprocessing pipeline in a graphical representation without the need for coding
at this conceptual stage of development. Because the GUI produces functional
analysis code, the user can immediately inspect, save, and run the generated
code. Thus, Porcupine provides a stepping stone that eases the transition from
concept to implementation. Because the entire pipeline and its parameters are
defined in abstracto before it is run, systems such as Nipype allow for elaborate
checks and optimisations of the pipeline’s execution. Furthermore, such systems
can straightforwardly incorporate full logging of all analysis steps, creating a
paper trail of the pipeline’s execution. This combination of a reproducible
environment in which a predefined pipeline is run by means of a system that
provides precise bookkeeping paves the way to new standard that will ensure
steady and reproducible progress in the field of cognitive neuroimaging [66].

In our practical experience, the use of Porcupine allows one to very quickly
prototype preprocessing pipelines. Novice users can create a pipeline de novo
and quickly focus on the code for this pipeline, greatly speeding up the learning
process and thereby facilitating the use of reproducible pipelines. We envisage
Porcupine to play a role in both the education of novice neuroimaging students
and the rapid prototyping of pipelines by expert users. Here, we first outline
several Porcupine use-case scenarios of increasing complexity, after which we
detail the architecture of Porcupine.

5.2 Results

What is Porcupine?

Porcupine is a graphical workflow editor that automatically produces analysis
code from a graphically composed pipeline. By dropping ’nodes’ (representing
analysis steps) into the workflow editor and by connecting their data inputs and
outputs, a pipeline is constructed. Analysis code is then automatically generated

https://www.docker.com
https://timvanmourik.github.io/Porcupine/examples
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from the graphical representation of the pipeline. The code can readily be
saved to a script (e.g. a Python, MATLAB, or Docker file) in order to perform
the desired analysis. Additionally, the pipeline can be shared or inspected in
visual form (PDF/SVG), or saved to a Porcupine specific (.pork) file to continue
working on the pipeline at another time.

Apart from the visual representation of the pipeline, we provide more func-
tionality to orderly structure one’s analysis, as outlined in Fig. S1. All functions
(the nodes in the graph) that are included in the pipeline are also listed in a
separate panel, listing their input parameters, output data, as well as a link to
the online documentation of the function. We also provide the option to iterate
over any input variable in order to facilitate parallelisation over subjects, sessions,
or other variables. All parameters may also be edited in a separate parameter
panel of the user interface. This functions as a central storage for important
parameters, for example the ones that should be reported in a methods section.
Porcupine combines the graphical overview and the parameters to automatically
create the analysis code shown in the code window.

4

3

2

1

Figure S1: A screenshot of a Porcupine workflow. The editor is divided into four panels, each
of them targeted at facilitating a more understandable and reproducible analysis.
The workflow editor (1) provides a visual overview of one’s analysis. The functions
are all listed in the node editor (2), where the parameters for all functions can be
orderly stored. This may include links to important parameters that are listed in
the parameter editor (3), such that an overview of the main analysis settings can
be easily viewed and modified. Readily executable analysis code is generated in
the code window (4)

We here focus on code generation that strictly adheres to the Nipype API
[63], a Python-based MRI analysis and pipelining package. Nipype is used for
its strong focus on uniformity in accessing functions, its link to most major MRI
analysis tools, and its emphasis on reproducible science. Porcupine’s architecture,
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however, is in principle agnostic with respect to the specific implementation of
the underlying pipelining software. Any package with a consistent interface in
the field of e.g. neuroimaging, bioengineering, or astronomy could benefit from
using Porcupine’s architecture.

We first show that we can easily generate a standard fMRI analysis pipeline.
After visually dragging and dropping modules, code is automatically created that
is usually scripted manually instead. We then show how we facilitate loading
data from an online repository, generate a readily executable fMRI pipeline, but
also generate a shareable and reproducible analysis environment (using Docker),
all with minimal additional effort. This allows for easily scalable analyses that
can be performed locally, but also on computational clusters or with cloud
computing, without manual installation of different software packages.

Usage example

We here show a simple example that constructs a pipeline for a single operation.
In three steps, data is loaded, (minimally) processed, and the output is written to
disk, as shown in Fig. S2. We here show an example that links to an OpenNeuro
fMRI data set, but we could load any online data set that is set up according to
the BIDS format [65]. OpenNeuro’s data sets are stored as Amazon repositories
(‘S3 buckets’) and can be loaded by dragging the appropriate module into the
workflow editor and typing the name of the bucket into the node editor. Its
output can subsequently be connected to a Nipype function node, for example
FSL’s Brain Extraction Tool. All parameters of the function are listed and can
be set in two different ways: either by dragging a link from a previous node’s
output port to an input port in the next node, or by typing in the parameter in
the node editor. Subsequently, output can be written to disk by connecting the
desired output to a Nipype DataSink node that collects and stores the data. By
pressing the ‘Generate code‘ button, the code for this pipeline is automatically
generated and can immediately be saved and executed in a Python shell.

Pipeline sharing

From a simple example that reads and writes the data, a more complicated
pipeline is readily set up. More functionality, i.e. nodes, can be dragged in and
connected to quickly build a custom pipeline. As it is commonplace to repeat a
single analysis or function for several subjects, sessions, or other variables, every
field can be flagged as an ‘iterator’ field. This facilitates looping over variables.
Once the pipeline is set up and the code is generated, Nipype offers functionality
to construct a visual pipeline graph from custom python code. In Porcupine’s
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Work�ow Editor Generated Code

Drag & Drop 
Connections

.pork �le .py �le

Figure S2: An example of simple workflow. In three steps, this pipeline loads data, processes
it, and writes it to disk. This is achieved by connecting the input and output
fields from subsequent nodes in the pipeline. The constructed workflow is then
transformed in readily executable (Nipype) analysis code.

proposed use-case, this end point of a standard Nipype pipeline represents the
starting point, as shown in Fig. S3. This allows the user to focus on the desired
pipeline graph first, and then progress to the manual editing of the generated
code.

P or cup ine  Gr ap h N ip yp e  Gr ap h

Figure S3: An example of a more complicated and realistic fMRI preprocessing pipeline.
Once the code is generated, this can in turn be transformed into a Nipype graph
visualisation. Whereas this is usually the end point for a pipeline in Nipype, we
here propose to use a visualisation as a starting point of one’s analysis.

Not only does Porcupine provide a way of setting up a preprocessing or
analysis pipeline, we also provide a means for executing these pipelines in
a reproducible environment. In addition to the Python analysis file that is
generated, we create a scaffold for a Docker file. Docker (https://www.
docker.com) is an open platform to easily build, run and share applications.
The generated Docker file describes a minimal operating system that is required
to run the analysis, based on the dependencies of the modules used in the
workflow editor. With this Docker file, an image of the full analysis can be built,
shared and executed. This provides a simple platform to reproduce results of
one’s analysis, on the same data set, or on another with only a single change in
the data source module. Alternatively, one can use it as a template environment
for a new follow-up analysis. As with all generated code, the Docker code is
fully customisable to a researcher’s need, but our suggested scaffold requires

https://www.docker.com
https://www.docker.com
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only a single manual edit to be built as a Docker image (see S1 Docker files).
The Docker command will execute the pipeline: load the data from an online
repository, process the data, and store only the output data to a local directory.
The Docker image includes both the pipeline code and the run environment,
and can be shared alongside a paper via DockerHub. The above examples (and
many more) as well as extensive documentation and tutorials can be found here.

Limitations

Some features in Nipype have not been implemented. Notably, the JoinNode
functionality is not yet accessible from the Porcupine user interface, in which the
results from an upstream iterator are aggregated to a single output. Furthermore,
custom extensions of Nipype functions are not automatically supported, but we
do provide a script to add one’s own custom module to Porcupine that would
make this functionality accessible. A GUI for this is still an intended point of
improvement. In general, feature requests are maintained as issues and projects
in the GitHub repository. We encourage people to contribute new ideas or
implementations for functionality in terms of modules, new toolboxes, and, most
importantly, custom pipelines that can be added to the repository. Details on
how to contribute can be found on the website.

While Porcupine in principle supports all workflow operations, a specific
pipeline may well require modules that are not provided within Nipype. It is
advised that the user either packages custom code for this into a new module,
or manually adds it to the produced code. We furthermore stress that Porcupine
is intended to function as a front-end encapsulation of NiPype, and does not
implement the parsing of python files that contain pre-defined nipype pipelines.
It also does not perform type-matching on the input and output of a connection,
nor does it perform syntax checking of the manually edited parameters.

5.3 Design and Implementation

Porcupine’s graphical user interface was written first with a general visual
programming application in mind. The initial interface to Nipype was developed
at a three-day coding sprint at BrainHack 2017, Amsterdam. This kickstarted
Porcupine in its current form. The source code, as well as the installer files
for Windows, Mac, and Linux, are publicly available as a GitHub repository.
Porcupine is free, open source, and released under the GNU General Public
License v3.0. It has static digital object identifier (DOI) doi.org/10.5281/
zenodo.1146653.

https://timvanmourik.github.io/Porcupine
https://github.com/TimVanMourik/Porcupine/projects
https://github.com/TimVanMourik/Porcupine
doi.org/10.5281/zenodo.1146653
doi.org/10.5281/zenodo.1146653
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Visual programming is a generic way of programming to create a data flow or 
to perform an ordered task with a modular structure [127]. Customarily, it allows 
the user to construct a Directed Acyclic Graph (DAG) [167] of conceptualised 
operations that are subsequently interpreted or compiled as an application [128]. 
This format is particularly useful for workflows that fit modular structures, such as 
most neuroimaging data analyses [146].

Architecture

Not only do we intend researchers to make their analyses (re-)usable and robust, 
our software also adheres to all 20 simple rules that were laid out to this end 
[108, 165]. The updates as well as the releases of the source code are realised 
by means of a GitHub repository. Installer files are provided for all platforms 
and do not require administrator privilege. Users are aided in getting started 
quickly by extensive documentation and an example gallery.

Easy cross-platform installation or compilation was achieved by programming 
Porcupine as a stand-alone application in Qt Creator (https://www.qt.io) 
for C++. Internal file formats were standardised to JSON dictionaries, a format 
native to Python, Qt, and web applications. This provides a simple means 
to add new modules to Porcupine, without the need to write additional code. 
Every dictionary specifies a software package (e.g. ‘Nipype’, ‘Docker’, etc.) 
that is interpreted by Porcupine and creates code that is native to the package. 
A package-specific interpreter needs to be written just once, after which new 
modules that are included in the dictionary will be automatically available in 
Porcupine.

Each JSON dictionary describes a list of functions (internally referred to as 
’nodes’). Each function has a name and (optionally) a category, a web url to its 
documentation, and a block of code. A code block specifies the software package 
for which the node is meant, the associated piece of code for that function and 
optionally an additional comment. Furthermore, a node contains any number of 
data/parameter ports, each of which can be input, output, or both. Optionally, 
additional flags can be set for ports to be visible in the editor, whether its value 
is editable, or whether the variable needs to be iterated over. Thus, JSON 
files for custom nodes can easily be created and added as a dictionary to the 
graphical interface. We also provide a Python script that converts a custom 
Python function(s) to a Nipype node dictionary.

https://www.qt.io
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Extending Porcupine with new toolboxes

Currently, Porcupine features Nipype and Docker support, but this could easily
be extended to other software packages. This requires no major changes to the
Porcupine source code, merely the inclusion of a single C++ class that describes
the relationship between the nodes, links, and the output code. Specifically, the
‘CodeGenerator‘ class must be inherited and has access to the full workflow: the
list of nodes, their parameters, and their connections. As long as all functions
within an analysis toolbox can be accessed with a consistent interface, they
can be represented as modules within Porcupine. Apart from Nipype, support
for a laminar specific fMRI analysis toolbox in MATLAB is provided. The
developers of the Fastr framework programmed initial support for their code
base [2]. Unfortunately, only few neuroimaging packages abide by this uniformity
of their functions and hence many cannot be included into Porcupine.

Relation to existing pipeline managers

Porcupine aims to provide an extendable, transparent and flexible platform
to build preprocessing and analysis pipelines. Other software packages have
made similar attempts at providing visual aids to build or run pipelines. Within
neuroimaging, the most notable ones are the JIST pipeline [113], extended
with CBS Tools [14] and the LONI pipeline [146]. Porcupine distinguishes itself
from these by not creating a run environment, but instead creating the analysis
code for the researcher. This retains the possibility of immediately running
the code through a Python interpreter, but also creates more flexibility, as
researchers can modify and adjust the script according to their needs. Lastly,
our open-source framework is set up to be extendable with new modules within
existing frameworks, as well as with completely new frameworks. This provides
a future-proof set-up for current and future analysis tools in neuroimaging and
perhaps other disciplines.

5.4 Availability and Future Directions

We have presented a new tool to visually construct an analysis pipeline. Sub-
sequently, Porcupine automatically generates the analysis code, and provides
a way of running and sharing such analyses. We see this as an important tool
and a stepping stone on the path to doing more reproducible and open science.
Additionally, this gives researchers a better oversight of their analysis pipeline,
allowing for greater ease of developing, understanding, and communicating
complex analyses.
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Porcupine provides two independent functionalities that dovetail to allow
users to more easily take part in reproducible neuroimaging research. They are
(1) a graphical user interface for the visual design of analysis pipelines and (2)
a framework for the automated creation of docker images to execute and share
the designed analysis.

We anticipate that the ability to design processing pipelines visually instead
of programmatically will cut the novice user’s learning phase by a considerable
amount of time by facilitating understanding and development. The ease of use
of a Graphical User Interface (GUI) implementation extends and complements
Nipype’s flexibility. Thus, it invites researchers to mix and match different tools,
and adhere less stringently to the exclusive use of the tools of any given toolbox
ecosystem. This flexibility enhances the possible sophistication of processing
pipelines, and could for instance be helpful in cross-modal research or multi-site
research. Additionally, it may nudge method developers to write new tools in a
way that easily integrates with the Nipype and Porcupine structure.

The emphasis that Porcupine puts on visual development of analyses makes
it easier to communicate a methods section visually rather than in writing. We
foresee that researchers may prefer explicity sharing the created .pork files and
the Nipype pipelines that are created from them, instead of solely relying on
written descriptions of their methods. Yet another use case for Porcupine is the
easy definition of proposed processing workflows for preregistered studies.

Importantly, Porcupine attempts to reduce the steepness of the learning
curve that is inherent to the use of complex analysis, by providing a more
structured and systematic approach to pipeline creation. It separates the skill
of building a conceptual analysis pipeline from the skill of coding this in the
appropriate programming language. This places Porcupine in a position to aid in
the education of novice neuroimaging researchers, as it allows them to focus on
the logic of their processing instead of the creation of the code for the processing
- greatly improving and accelerating their understanding of the different steps
involved in the preprocessing of neuroimaging data. At the same time, it allows
more experienced researchers to spend more time on the conceptual side than
on implementational side.

Having allowed for the visual design of a pipeline for the preprocessing or
analysis of a neuroimaging dataset, the reproducible execution of this pipeline
is another step that Porcupine facilitates. By flexibly creating a Docker image
tailored to the different preprocessing steps defined visually in the GUI, Porcupine
allows the user to share not only the definition of the pipeline but also its
execution environment. This step removes the overhead of having to manually
install the desired operating system with the matching distribution of MRI
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analysis software. This final step greatly facilitates the reproducibility of reported
results, and is part of a general evolution of the field towards easily shareable
and repeatable analyses.

The generated Docker image can be made High Performance Computing
aware by means of dedicated tools such as docker2singularity. Alternatively,
with only trivial additions to the Dockerfile, it can be transformed into a BIDS
app [64]. A detailed explanation for doing this can be found on our website.
An automatic and direct way of creating this has not yet been implemented.
Additionally, integrating support for standardised workflow file formats, such
as the Common Workflow Language [5] could further add to Porcupine’s aim
of reproducibility. Another point of improvement is a functionality to embed
pipelines within pipelines. Currently, a complicated pipeline does full justice
to the term ‘spaghetti code’, and the number of nodes and links may easily
compromise the visual aid in understanding; the very purpose for which Porcupine
was created. This may easily be solved by compartmentalising pipelines into
logical units by providing an embedded structure.

We intend Porcupine to be a strong aid for doing better, more reproducible
and shareable science. By bridging the gap between a conceptual and imple-
mentational level of the analysis, we give scientists a better oversight of their
pipeline and aid them in developing and communicating their work. We provide
extensive and intuitive documentation and a wide range of examples to give
users a frictionless start to use Porcupine. We look forward to adding more
functionality andsupporting more toolboxes in the near future.

5.5 Supporting information

S1 Docker files Porcupine provides a Docker image that creates the necessary
run time environment for a pipeline that is constructed in the workflow editor. As
with all generated code, the Docker code is fully customisable to a researcher’s
need, but our suggested scaffold requires only a single manual edit to be built as
a Docker image. A Docker script can only refer to online or on-disk resources,
so the pipeline file needs to be saved manually and added to the Docker file:

ADD /path / to / p i p e l i n e / s c r i p t . py / somewhere/ p o r c u p i p e l i n e . py
CMD [ " python " , "/ somewhere/ p o r c u p i p e l i n e . py " ]

Once this line is added, the docker image can be built:

$ docke r b u i l d −t mydockerimage −f D o c k e r f i l e

The output from the executed pipeline can be written to a local directory on
a researcher’s computer (‘/my/local/directory’) by mounting it to the docker

https://github.com/singularityware/docker2singularity
https://timvanmourik.github.io/Porcupine/documentation/advanced/make-a-bids-app


5.6. Acknowledgements 103

output directory (‘/data’) with the ‘-v’ option and running the image as if it
were a standalone application.

$ docke r run −v /my/ l o c a l / d i r e c t o r y : / data mydocker image

This Docker command will execute the pipeline: load the data from an online
repository, process the data, and store only the output data to a local directory.
A fully worked out example with detailed explanation can be found here.
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The layers of the cortex contain information about the nature of processes
undertaken by brain regions and may reveal more information about inter-
regional communication. Functional MRI is the most realistic method to date
for studying the cortical layers in living human subjects, as it is spatially precise
and non-invasive. The objective of this thesis was to pave the way for doing
more robust and routine laminar fMRI analysis. The work presented in this thesis
provides a significant step towards this end. We have developed several new
methods that solve major problems in laminar analysis, we have implemented a
full layer specific analysis, and we took explicit care to make the entire analysis
pipeline reproducible and reusable.

First, we addressed the problem of local distortions that are often present in
Echo Planar Images (EPI). Due to inhomogeneities in the main magnetic field,
nuclei in some areas precess at different rates. Effectively, this causes small shifts
in parts of the image with respect to the true position. Thus, even if the true
locations of the layers are known in anatomical space, they will be displaced by
distortions that can easily be larger than the thicknesses of the layers. Without
correcting this effect, it is virtually impossible to retrieve any reliable layer signal.
Chapter 2 introduced a method for addressing this type of distortion, Recursive
Boundary Registration (RBR), which can achieve submillimetre accuracy.

Once the geometry of our cortical surfaces is properly aligned with our
functional data, there is a further question that needs to be answered: how
can the laminar signal be extracted from the MRI volume? There are several
intuitive ways: a volume could be interpolated at the approximate location
of the layers, or voxels could be classified to represent the most likely layer.
However, both these methods inherently smears out the laminar signal to some
extent. In Chapter 3 we set out to quantify this signal leakage and to present
a new method designed to reduce it and to more cleanly separate the laminar
signals by means of a spatial General Linear Model.

Having prepared the data for high-resolution accuracy with RBR, and having
invented a way to extract laminar signals with the spatial GLM, we were ready
to conduct an experimental study. In Chapter 4, we investigated the laminar
underpinning of visual attention. The visual system has been widely studied,
and laminar level processing and anatomical organisation are relatively well
known as a result of research in animals, which makes these regions well suited
to be studied with laminar fMRI in humans. In general, in the primary visual
cortex, visual input first arrives in the thalamus; from there, thalamo-cortical
connections primarily target layer IV in the primary visual cortex. In contrast,
layers I-II and VI typically receive downward information flow (feedback) from
other regions in the cortex, for example when attending to specific features or
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parts of the incoming visual information. Therefore we investigated whether the
BOLD signal in fact shows a laminar differentiation in feedback and feedforward
signals.

But could someone else understand, reproduce, or replicate our study from
Chapter 4? Although the entire laminar analysis procedure can in principle be
reconstructed from the methods section in the work described here, it would
take a lot of time and effort to translate it into code for someone unfamiliar with
the analysis. In addition, the methods describe the core of the analysis pipeline,
but not the branches for data quality checks; sanity checks; or intermediate
results for, for example, inspecting registration or layering quality. If the original
code is provided, reproduction of the results should be much easier, but still
not straightforward. It takes a lot of time to become accustomed to someone
else’s style of coding and to the programming languages and toolboxes that
were used. Even if all these hurdles are overcome, it is still essential to have
the appropriate software versions and licences to run the code. We addressed
these problems by creating a tool called Porcupine to visually create, inspect,
and share analyses, as shown in Chapter 5.

Chapter 2: Recursive Boundary Registration

Geometrical transformations from one volume to the other (coregistration) have
been very successful for volume-to-volume registration and are used routinely
in fMRI analysis. Even when volumes have low contrast, low resolution, or
few slices, they often contain enough information to compute simple (linear)
transformations for an accurate coregistration [69]. However, this may not be
enough for more complex (non-linear) warpings. Non-linearities require a high
number of degrees of freedom because of the many parameters that need to be
estimated. This leaves more room for error and therefore requires high-contrast
data sets (i.e., more information). Non-linear transformations are routinely used
for transforming single subject anatomical space to a template space with the
same strong grey-white matter contrast. However, they are not powerful enough
to be applied for cross-contrast purposes, for example to undistort low-contrast
EPI images. We have therefore developed a new technique for this: Recursive
Boundary Registration (RBR). By recursively applying linear transformations at
diminishing spatial scales, we effectively compute a non-linear registration. In
order to guarantee smoothness over all transformations, it is combined with a
control point lattice that regulates the transformations. We explicitly take the
geometry of the brain into account, which provides a novel way to approach
non-linear coregistration.
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We tested RBR on two different types of data. First, in order to establish
a gold standard with known distortions, we warped a FLASH image that was
initially distortion-free. Because of the controlled warping, we could easily
compare the performance of RBR to our ground truth and thereby verify the
quality of the registration. Second, we examined a high-resolution EPI data
set of 11 subjects that had real distortions. As the true size of the distortions
was unknown, there could not be an absolute quality metric for the registration.
Instead, by adding different levels of noise, we showed that there was a clear SNR
dependence in the displacement that decreased towards the no-noise condition.
Additionally, we provided an abundance of graphical evidence to illustrate the
performance of RBR.

The power of the RBR approach lies in the fact that it makes explicit use of
the cortical folding and the specific geometry of the individual brain. It is therefore
more robust with lower contrast images and can still produce an accurate
registration while preserving the topology of the original surfaces. Because of
the large number of parameters that had to be estimated, we built in a number
of robustness assurances. Despite the overall improved registration, it remained
important to carefully inspect the quality of the registration to verify the required
submillimetre accuracy. RBR proved to be a valuable tool for preparing Gradient
Echo images for subsequent analyses; we therefore used it in our experimental
study in Chapter 4. It is now an integral part of the fMRI analysis toolbox for
laminar fMRI: https://github.com/TimVanMourik/OpenFmriAnalysis.

A helpful perspective for understanding this coregistration method is a more
conceptual view of the problem. The problem of coregistration can be classified
along two main axes: the type of image contrast can be different or the same,
and the required transformation can be linear or non-linear. The easiest scenario
is to find a linear transformation for volumes with similar contrast. The problem
becomes harder when the volumes have different contrasts, as the mapping
of intensity values from one volume to the next is unknown. If instead the
contrast is the same but the required transformation is non-linear, accurate
solutions can still be found [31]. However, when the contrast is different and
the registration should be non-linear, the degrees of freedom of the problem
increases dramatically; so much so that the search space becomes too large to
estimate. Combine this with the low contrast-to-noise ratio of fMRI data and
it is clear that solving this problem is computationally infeasible with standard
volume-to-volume registration techniques. The key to being able to do cross-
contrast and non-linear registration is to introduce more prior knowledge into the
equation. We here used the geometrical information of the cortex and its many
gyri and sulci to more accurately estimate a non-linear cross-modal registration.

https://github.com/TimVanMourik/OpenFmriAnalysis
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This assumption only holds for volumes with the same geometry (within subject);
so by introducing subject-specific prior knowledge, we restrict the number of
potential applications of the method. Where the previous non-linear transforms
could also compute subject-to-template registration, we lost this ability by strictly
enforcing equal geometry across volumes. As a general notion, algorithms can
become more powerful when they are more specialised. Usually this requires a
specific type of prior knowledge in the data that is quantified and optimised.

Chapter 3: Spatial GLM for laminar FMRI

In order to extract the laminar signal from the cortex, we started out with the
notion that all voxels contain contributions from a number of layers. If this
mixture could be accurately modelled, it could theoretically also be inverted.
Inverting a model with a General Linear Model (GLM) with voxel specific layer
mixtures could yield the layer intensity values. To achieve this, we first set
up a mathematical framework to accurately model the layer distribution and
subsequently estimate the layer signal intensity. We incorporated information
about the precise location, curvature, and thickness of the cortex into the
modelling perspective. For the estimation procedure we suggested taking into
account the noise correlation of the volume. Interestingly, we found a way
to describe existing procedures in the same mathematical framework of the
laminar spatial GLM. This allowed for easy comparison between procedures in
the subsequent validation.

In validating the performance of all methods, we used several different
types of data. In order to see if in principle the method would perform better
when all assumptions were met, we made a highly accurate simulation of the
cortex. By modelling known properties about the curvature into the gyri and
sulci of the cortex, we constructed a gold standard of an MRI volume. This
allowed for a maximally clean comparison between the different methods in ideal
circumstances. As predicted, extracting the laminar signal by means of a spatial
GLM considerably reduced the signal leakage to neighbouring layers. We then
investigated the performance of all three methods with two types of emphin
vivo data: a high-resolution (post-mortem) part of the cortex that allows for
the specification of a large number of cortical layers, and a set of in vivo human
structural scans to gauge the viability of the methods in live human MRI data.
We found largely similar behaviours between methods, but also a disturbing
artefact in the spatial GLM profiles: an oscillating pattern that became stronger
mainly when the cortex was divided into more layers. The performance and the
strength of the ringing artefact also depend on a vast parameter set that would
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be interesting to investigate. These parameters include, amongst others, the
volume’s spatial resolution, noise level, noise type, the presence or absence of
veins, and intensity gradients. Investigating the combination of all these factors
would have created a combinatorial explosion, so we carefully chose a subset
and presented the comparative results.

Thus, we provide a more formal mathematical description of layer separation.
Despite the mathematical rigour, we find that the solution is more prone to error.
We have previously mentioned that methods can become more powerful when
they use types of prior knowledge inherent to the data. As an important addition,
this study shows that this power might come at the cost of a high susceptibility
to cases where the assumptions are violated. The fact that artefacts appear in
the profile for the spatial GLM may well be interpreted as inaccurate boundary
placement or the presence of unknown types of noise. While it is the GLM
method that amplifies these inaccuracies, it should be noted that they are also
present when other techniques for layer extraction methods are used. This may
be a serious concern for laminar analysis in general, and still requires thorough
examination. The presence of these artefacts again stresses the importance of
carefully inspecting one’s data before proceeding to making laminar inferences.
We find that segmentations with one layer per voxel over the thickness of the
cortex still yield stable solutions. We thus suggest that this should be the
guideline for laminar resolution and that a higher number of layers may provide
a false sense of spatial specificity.

Chapter 4: Layer Specificity in Visual Attention

In Chapter 4 we describe an experiment aimed at dissociating visual and atten-
tional inputs to the primary visual cortex at the laminar level. We constructed
an experiment in which we balanced visual input and attentional input in an
orientation discrimination task. This experiment was carried out at high field, 7
Tesla, for higher sensitivity and submillimetre resolution. We took explicit care to
remove as many sources of noise as possible: we corrected the distortions in the
volume with RBR; filtered out heartbeat and respiratory noise with RETROICOR;
established regions of interest from a dedicated retinotopic session; had a high
number of subjects, a powerful statistical design, and performed more rigorous
statistical tests than ever conducted in a laminar study; looked at three regions
of interest of the visual hierarchy (V1, V2, V3); and performed numerous control
analyses. Despite all this, we found no evidence for layer specific differentiation
in the BOLD signal.

While we did not find statistical differences at the layer level, at the level of
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the region of interest we did find activation for feedforward and feedback stimuli.
In line with previous findings, feedback (attentional) activation increases towards
higher visual areas, whereas feedforward (visual) activation decreases [126, 85].
Additionally, there is a steady increase in activation towards the superficial layers.
This has frequently been observed and has two main potential explanations
[100, 141]. The blood flows from deep layers to superficial layers and may cause
a BOLD carry-over effect; alternatively, the pial surface has large draining veins
to which gradient echo is sensitive, which may leak signal into lower layers as
a methodological artefact. The lack of layer specific differentiation is difficult
to interpret. When an experiment yields a null result, there are a variety of
potential causes that cannot easily be distinguished. They can be separated
into three categories: methodological, neurophysiological, and statistical.

As mentioned throughout this thesis, exceedingly precise measurements are
required for structures as small as the cortical layers. During the data analy-
sis, many methodological challenges were resolved, but we cannot exclude the
possibility of residual structural misalignments, for example due to cortical recon-
struction or registration inaccuracies, dynamic misalignments due to movement,
or cardiac pulsation of the brain. Additionally, we made several compromises
because of the limits of the acquisition. The price we paid for a high spatial
resolution and sensitivity was a low SNR per voxel and reduced specificity as a
result of draining veins on top of the cortex. Other choices might have revealed
more signal or reduced the amount of noise. Methodological issues that are
not sufficiently addressed may in the worst case lead to a bias in the results,
and even in the best case they may increase the noise surrounding the effect. If
there is a true effect, it will only count as statistically significant if the average
effect is stronger than the sources of noise that are inherently present in any
measurement. We reduced the sources of noise and tried to increase the signal
by scanning a larger number of participants than is customary for laminar studies:
N=17 (cf. N=6 in [141], N=4 in [122], N=10 in [99]). Nonetheless, the signal
term may still be small. Neurophysiologically, it is uncertain if targeted layers
have a large effect on the laminar BOLD signal. While feedforward and feedback
signals preferentially target specific layers, the neurophysiological signal may
spread nearly instantaneously to other layers. On top of that, the neurovascular
coupling does not guarantee that this is uniquely visible in the respective layer.
An alternative explanation could be that our attentional modulation is fundamen-
tally different from other cognitive capacities that have shown positive laminar
differentiation, such as figure-ground segregation [99] or other non-classical
receptive field effects [122].

In general, it is hard to specify the reason behind the null result, but it is
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interesting to put it in a broader perspective and compare it to other positive
results in the literature. Given the difficulty of the analysis, the small effects,
and the large number of sources of noise, one might expect many publications
with laminar null results. However, to date, no paper exists that has specifically
hypothesised and looked for laminar differentiation but found none, suggesting
a substantial publication bias in this research field. There are understandable
reasons for this. A negative result might be due to one or more of many possible
errors made during the experiment. Identifying what underlies a negative result,
and whether it is a true negative or related to unknown errors, is very hard. A
positive result, on the other hand, is more readily accepted as not being due to
error but to a true experimental effect, and will therefore find an easier path
to publication. However, this will undoubtedly keep papers of similar quality
in the file drawer, primarily because of their outcomes. Therefore, the state of
the literature does not necessarily provide an accurate reflection of all scientific
work [83, 28]. A critical reflection on this publication bias would be a welcome
addition to the literature.

Chapter 5: Pipelines for FMRI with Porcupine

By visually creating a pipeline, the conceptual understanding is prioritised over
the implementational details. This allows researchers to think more creatively
about solving problems and gives them a better overview of their methods. At
the same time it addresses many problems at the core of the reproducibility
crisis in neuroimaging [41, 125]. As Porcupine creates analysis code, one can
now easily complement the methods section with a visual representation of the
pipeline, which automatically translates to a workable script. The graphical
pipeline is easily modifiable by non-coders, but the produced script could also
be used by expert coders as a template to continue scripting. Additionally,
we created a minimal operating system as a Docker file. This ensures that
identical software versions are used and thus creates a completely reproducible
environment.

In fMRI analysis, it is customary to perform many sequential steps on the
data to make it maximally sensitive to the relevant dimensions in the data, and
to reduce it to a summary statistic of neurocognitive interest. This type of data
analysis is by no means restricted to fMRI analysis alone. It is present in other
types of neuroimaging (e.g., EEG/MEG analysis, [135]), bioinformatics [187], and
also in non-scientific areas such as computer graphics [17]. Visual programming
tools of Porcupine’s kind are also not unique; not even in MRI analysis [113].
It is therefore interesting to consider why they have not been adopted by the
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community. Part of the reason may be that scientists often try to solve very
specific questions, and do not necessarily realise the broad scope of applications
for which such tools could be used, or complementary tools to which they could
be connected. As a result, tools that could be of generic use may instead be
written for personal use and thus not necessarily be compatible or consistent
with similar software in the field. While common in almost every branch of
software engineering, major fMRI analysis toolboxes have dedicated little effort
to specifying communication between software components in an application
programming interface (API). By and large, the characteristics of the software
are a reflection of an organisational structure with high degrees of specialisation
into independent tasks, and of a culture where individual accomplishments are
more valued than the accomplishments of a team. From the user and developer
perspectives, the unfortunate consequences are difficulties in getting familiar with
and maintaining a package when it accumulates knowledge, methods, and new
insights. Additionally, there is less than fertile ground for efforts to streamline
the analysis, such as visual programming applications. The only neuroimaging
package that makes an explicit attempt at consistency throughout its interface
is Nipype, so this is the package to which we linked Porcupine. Nipype has the
added benefit of linking to major MRI analysis packages in the community, so
that it is the most diverse MRI analysis tool to date.

FMRI analysis pipelines are increasing in complexity, and the era of simple
blobological studies is over. Logically, then, the learning curve to get to state-
of-the-art methods and cutting-edge science is longer than in the early days
of fMRI. If we keep reinventing old wheels by rewriting long analysis scripts or
reimplementing software in many packages, this may inadvertently slow down
the scientific process of new discoveries. Science will need to find a way to
keep these longer pipelines insightful and keep the analysis manageable. With
Porcupine we have made a considerable step towards this end. Additionally,
Porcupine was fully made in the spirit of open science: the software is open
source for everybody to contribute. Throughout development, scalability of the
software has been a priority. Porcupine can easily be extended to other packages
within or outside neuroimaging; its modular components may also be extended
with running pipelines or visualising data. We believe that this is a valuable
direction for a more open, reproducible, and sustainable science.

General Discussion

In this thesis, we have presented a variety of new tools for laminar analysis,
made them available in an open source toolbox, linked it to our new graphical
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pipeline interface, and conducted a laminar fMRI experiment. This PhD project
had as its main goal to make laminar analysis a more routine process and to
learn more about directional communication in the cortex. We can safely say
that we succeeded in streamlining this process, although we did not find laminar
differentiation in our experimental study. Our initial hypothesis was that the
layer specific BOLD signal would reflect the initial target layers for neuronal
input. We have to consider that this picture is too simplistic to capture the
complex operations that are being performed by the brain. It is important to
further investigate how neuronal input to the cortex propagates to other layers,
and how this is subsequently reflected in the laminar quantities such as BOLD,
but also CBV, CBF, and CMRO2. We have provided the tools to perform laminar
analysis, independent of contrast mechanism, and now the main outstanding
question is: can we use it to investigate the true nature of the laminar signal?

Recent work has shown higher layer specific accuracy for CBV than for
BOLD in the motor cortex [82]. Huber’s BOLD/CBV study is a good example
of the relevance of comparative studies and could be helpful in achieving a better
understanding of the neurovascular coupling and neurophysiological processes.
It is also interesting to see that the authors report results with 20 intermediate
layers and perform control analyses with the spatial GLM. They comment that
the spatial GLM method comes with significant noise enhancement, but it
may be worth considering that the signal to distinguish 20 layers was never
there in the first place. This limitation of the data is not revealed in classical
(oversampled) interpolation, but may easily give a false sense of accuracy with
respect to the spatial specificity.

In this thesis, we encountered numerous potential sources of noise. We took
care to remove as many of them as possible, but not everything could be filtered
out. A logical conclusion for future studies would be to increase the signal, for
example by investing in even higher field strengths. Unfortunately, this may be
subject to the law of diminishing returns. While initially the SNR was thought
to increase almost quadratically (a power of 7/4 [79]), this was later shown to
be only mildly superlinearly [78]. And with a linear decrease of the voxel length,
its size (and SNR) decreases cubically, so the resolution may not improve much
with higher field strength. Additionally, higher fields typically show higher field
inhomogeneities and consequently higher distortions that cannot be corrected
with RBR anymore. It will also put higher pressure on hardware and pulse
sequences, since the T∗2-values for tissue, blood and deoxyhaemoglobin decrease
as a function of field strength. Thus, many technical challenges still need to be
overcome before higher fields can adequately aid in the laminar investigation.

Could new developments in the analysis technique resolve these difficulties?
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The placement of layers is still a point that requires major improvement. Where
we proposed image-based distortion correction with RBR, other methods try to
use acquisition time strategies with topup [162], or acquire structural images with
the same distortions [95]. These methods all have their upsides and downsides
and still stand to be improved. The subsequent step of dealing with the partial
volume effect with the spatial GLM also leaves significant room for improvement.
We laid out an initial strategy of creating a layer model and unmixing layer
specific signal, but the results still show methodological artefacts and noise
amplification. We identified a number of underlying sources, but the analysis
stands to benefit from a more thorough investigation and quantification of the
factors that contribute to this problem.

Apart from better methods and a better understanding of the neurovascular
coupling, it is equally important to better understand cognitive processes at
the laminar level via other routes. The ultimate goal of laminar analysis is to
provide answers to these questions, but as we are still in the early days of laminar
fMRI, it goes both ways: in order to validate laminar analysis as a method it
is important to have benchmark scenarios against which it can be tested. And
at some point, science does not only need more big data but big theories [88].
More focus on the conceptual and computational nature of the cortical layers is
needed to generate testable hypotheses. Only the combination of viable theories
and experimental data will give us a better understanding of the human brain
and mind.
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In dit proefschrift zoomen we zo ver mogelijk in op het brein, en proberen we een
glimp op te vangen van de processen die daar plaatsvinden. Door iedere paar
seconden een driedimensionale afbeelding te maken van het brein kunnen we een
indruk krijgen wat er zich daar afspeelt. Op een grove schaal kunnen we zien
welke breingebieden actief worden bij verschillende taken: als het licht aangaat,
wordt de achterkant van je brein actief (de visuele cortex), en voornamelijk
de linker zijkant van het brein (je taalcentrum) wordt actief als je deze tekst
leest. Maar wat betekent het dat die gebieden actief worden? Wat doen ze
dan precies? Op een MRI-scanner kunnen we voornamelijk zien dat gebieden
meer of minder zuurstof verbruiken. Dat vertelt echter niet zo gek veel over
het proces wat zich daar afspeelt. Om daar iets beter achter te komen, moeten
we nog verder kijken. Dankzij anatomische ontledingen van het brein weten
we dat de buitenste schil van het brein, de grijze stof, uit verschillende laagjes
bestaat. Sommige lagen ontvangen informatie en sommige lagen sturen het
door naar de andere breingebieden. Het doel van dit proefschrift is de functie
van verschillende lagen te laten zien op basis van MRI-scans.

Dat is echter niet makkelijk: de laagjes zijn zo klein dat de resolutie van de
MRI-scanner maar ternauwernood goed genoeg is. En daar komt nog bij dat de
plaatjes die uit een MRI-scanner komen zelf ook licht verschoven zijn. Vervolgens
moet je erachter zien te komen hoe, in een kronkelend brein, de laagjes precies
verdeeld zijn over alle volume-pixels (voxels) van het driedimensionale plaatje.
En verder wilden we dit niet gewoon één keer uitvoeren, maar zorgen dat iedereen
dit type onderzoek voortaan ook kan doen.

In hoofdstuk 2 zijn we begonnen met het eerste probleem: binnen de
afbeeldingen die uit de MRI-scanner komen, liggen de verschillende lagen niet
exact op de goede plek. Dit heeft te maken met de manier waarop een MRI-
scanner werkt: in het midden van scanner wordt een groot magneetveld gecreëerd
wat cruciaal is voor het maken van scans. Echter, als het magneetveld niet
exact homogeen is, vertaalt dit zich in de scan als kleine (lokale) verplaatsingen.
Omdat het nou juist cruciaal is tot op het kleinste niveau op de goede plek te
meten als je de verschillende lagen wil meten, is dit een groot probleem. Daarom
hebben we een methode bedacht om de scan ‘recht te trekken’ en weer terug
op de goede plek te leggen. Op basis van beeldanalyse kijken we heel precies
waar de grenzen van de witte en grijze stof zitten, ten opzichte van een niet
verplaatste referentie scan. We laten vervolgens op verschillende data sets zien
dat de methode daadwerkelijk een veel preciezer beeld geeft over de locatie van
de verschillende lagen.
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Hiermee is de locatie van de lagen met hoge precisie bekend. Het hele
hersenoppervlak ligt echter nog steeds gekronkeld in het volume en de verschil-
lende lagen zijn zo klein dat ze nog niet duidelijk te zien zijn. In hoofdstuk 3
beschrijven we een nieuwe methode op basis waarvan de signalen uit verschillende
lagen beter geschat kunnen worden. Dit doen we door middel van een wiskundig
model dat beschrijft hoe de laagjes verdeeld zijn over het volume. Aan de hand
van dit model kunnen we preciezer dan voorheen de signalen uit de lagen halen.
Op basis van drie verschillende datasets laten we zien hoe deze nieuwe methode
presteert. In een simulatie van een MRI-volume blijkt het veel beter te werken
dan bestaande methode. Dit is echter niet zo duidelijk in data van echte scans.
De reden hiervoor is dat onze methode op goede data inderdaad een betere
schatting kan maken, maar wel gevoeliger is voor ruis in de data. Dat maakt het
moeilijk goed zicht te krijgen op het verschil tussen de methodes op standaard
MRI-scans.

Na deze twee methodologische studies om de weg vrij te maken voor laag-
specifieke analyse, hebben we in hoofdstuk 4 geprobeerd uit te zoeken of
de lagen inderdaad verschillende activatie tonen bij verschillende processen.
Hiervoor hebben we een aandachtstaak gebruikt. We vroegen mensen hun
aandacht links of rechts te focussen en af en toe verscheen er een stimulus (een
zwart-wit gestreept plaatje) op het scherm. Zo wilden we onderzoeken of het
effect van aandacht in andere lagen te zien valt dan het effect van het zien van
een stimulus. Op brein niveau was er wel degelijk een effect te merken, maar op
laagniveau zagen we geen verschil. Dit is dus een nul-resultaat met betrekking
tot de signalen uit de verschillende lagen. Het is moeilijk te zeggen wat hier
precies de reden van is: of het effect niet bestaat, of het effect niet sterk genoeg
was, of dat de methodes niet goed genoeg waren om het eruit te halen (of een
combinatie van factoren).

Hoofdstuk 5 gaat over een applicatie die we ontwikkeld hebben om het
makkelijker te maken om MRI data te analyseren, Porcupine. Analyses bestaan
doorgaans uit lange scripts die een aaneenschakeling beschrijven van verschillende
bewerkingen die uitgevoerd moeten worden op de gemeten data. Onderzoekers
schrijven deze analyse code vaak zelf, maar deze scripts zijn vaak moeilijk te
interpreteren. In plaats hiervan kan een analyse in Porcupine visueel gepro-
grammeerd worden door blokjes aan elkaar te verbinden. Dit representeert de
volgorde van de analysestappen en laat zo op een grafische manier zien hoe
de ‘workflow’ eruit ziet. Porcupine genereert vervolgens de analyse code die
direct uitgevoerd kan worden. Omdat dit een inzichtelijke weergave biedt die
makkelijker deelbaar is en makkelijker valt aan te passen dan huidige analyse
scripts, zorgt dit voor een reproduceerbaardere wetenschap.
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Hiermee maakt het werk in dit proefschrift de weg vrij om de lagen van de
cortex meer routinematig te analyseren. Alhoewel we in dit onderzoek geen
effecten gevonden hebben, lijken andere studies (die dezelfde methodes hebben
gebruikt) wel resultaten op te leveren. Het is dus nog onduidelijk wat voor
informatie er precies te vinden is als we met die precisie in het brein proberen te
kijken. Laag-specifieke brein analyse in functionele MRI staat hiermee dus nog
in de kinderschoenen, en onze methodologische ontwikkelingen staan hieraan
ten grondslag.
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